图像表示中圆正交矩的评价

Leida Li, Shushang Li, Guihua Wang, A. Abraham
{"title":"图像表示中圆正交矩的评价","authors":"Leida Li, Shushang Li, Guihua Wang, A. Abraham","doi":"10.1109/ICIST.2011.5765275","DOIUrl":null,"url":null,"abstract":"Invariant image representation plays an important role in many pattern recognition applications, such as texture classification, face recognition and character recognition. In this paper, we evaluate some of the invariant orthogonal moments, including Zernike moment (ZM), pseudo-Zernike moment (PZM), and Polar Harmonic Transform (PHT), which are all computed in a circular domain. The performance of invariance and image representation ability are evaluated.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"36 1","pages":"394-397"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An evaluation on circularly orthogonal moments for image representation\",\"authors\":\"Leida Li, Shushang Li, Guihua Wang, A. Abraham\",\"doi\":\"10.1109/ICIST.2011.5765275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Invariant image representation plays an important role in many pattern recognition applications, such as texture classification, face recognition and character recognition. In this paper, we evaluate some of the invariant orthogonal moments, including Zernike moment (ZM), pseudo-Zernike moment (PZM), and Polar Harmonic Transform (PHT), which are all computed in a circular domain. The performance of invariance and image representation ability are evaluated.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"36 1\",\"pages\":\"394-397\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

图像不变性表示在纹理分类、人脸识别和字符识别等模式识别应用中发挥着重要作用。本文讨论了在圆域上计算的一些不变正交矩,包括泽尼克矩(ZM)、伪泽尼克矩(PZM)和极调和变换(PHT)。对算法的不变性和图像表示能力进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evaluation on circularly orthogonal moments for image representation
Invariant image representation plays an important role in many pattern recognition applications, such as texture classification, face recognition and character recognition. In this paper, we evaluate some of the invariant orthogonal moments, including Zernike moment (ZM), pseudo-Zernike moment (PZM), and Polar Harmonic Transform (PHT), which are all computed in a circular domain. The performance of invariance and image representation ability are evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信