给定最小和最大度的连通图的顶点度函数索引的若干界

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
X. Cheng, Xueliang Li
{"title":"给定最小和最大度的连通图的顶点度函数索引的若干界","authors":"X. Cheng, Xueliang Li","doi":"10.46793/match.90-1.175c","DOIUrl":null,"url":null,"abstract":"This paper gives some bounds for the vertex degree function index Hf(G) in terms of the order and size of a graph G, where G is a simple, finite and connected graph with minimum degree δ and maximum degree ∆. Some families of graphs are also constructed to show that the bounds can be achieved.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"88 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Bounds for the Vertex Degree Function Index of Connected Graphs with Given Minimum and Maximum Degrees\",\"authors\":\"X. Cheng, Xueliang Li\",\"doi\":\"10.46793/match.90-1.175c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives some bounds for the vertex degree function index Hf(G) in terms of the order and size of a graph G, where G is a simple, finite and connected graph with minimum degree δ and maximum degree ∆. Some families of graphs are also constructed to show that the bounds can be achieved.\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46793/match.90-1.175c\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46793/match.90-1.175c","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文根据图G的阶数和大小给出了顶点度函数指标Hf(G)的一些界,其中G是一个最小度δ,最大度∆的简单有限连通图。还构造了一些图族,以表明可以实现边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Bounds for the Vertex Degree Function Index of Connected Graphs with Given Minimum and Maximum Degrees
This paper gives some bounds for the vertex degree function index Hf(G) in terms of the order and size of a graph G, where G is a simple, finite and connected graph with minimum degree δ and maximum degree ∆. Some families of graphs are also constructed to show that the bounds can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信