两种可变形固体之间具有非线性弹性粘附的接触配方

A.S. Bretelle , M. Cocu , Y. Monerie
{"title":"两种可变形固体之间具有非线性弹性粘附的接触配方","authors":"A.S. Bretelle ,&nbsp;M. Cocu ,&nbsp;Y. Monerie","doi":"10.1016/S1287-4620(00)00124-1","DOIUrl":null,"url":null,"abstract":"<div><p>Within the framework of finite deformations and using an approach to the kinematics of contact due to A. Curnier, Q.C. He and J.J. Téléga, we propose a spatial thermodynamic formulation for the problem coupling unilateral condition, friction and adhesion. The adhesion is characterized by its intensity introduced by M. Frémond. In the case of frictionless contact between an hyperelastic body and a plane rigid support, with a particular `static' law for the evolution of the intensity of adhesion, the problem can be reduced to a minimization one for which we can show the existence of a solution.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 3","pages":"Pages 203-208"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00124-1","citationCount":"4","resultStr":"{\"title\":\"Formulation du contact avec adhérence en élasticité non linéaire entre deux solides déformables\",\"authors\":\"A.S. Bretelle ,&nbsp;M. Cocu ,&nbsp;Y. Monerie\",\"doi\":\"10.1016/S1287-4620(00)00124-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Within the framework of finite deformations and using an approach to the kinematics of contact due to A. Curnier, Q.C. He and J.J. Téléga, we propose a spatial thermodynamic formulation for the problem coupling unilateral condition, friction and adhesion. The adhesion is characterized by its intensity introduced by M. Frémond. In the case of frictionless contact between an hyperelastic body and a plane rigid support, with a particular `static' law for the evolution of the intensity of adhesion, the problem can be reduced to a minimization one for which we can show the existence of a solution.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"328 3\",\"pages\":\"Pages 203-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00124-1\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000001241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000001241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在有限变形的框架内,利用a . Curnier, Q.C. He和J.J. tamesim的接触运动学方法,我们提出了单侧条件、摩擦和粘附耦合问题的空间热力学公式。这种粘附的特点是由fr蒙德先生引入的强度。在超弹性体与平面刚性支撑之间无摩擦接触的情况下,具有粘附强度演变的特定“静态”定律,可以将问题简化为我们可以证明存在解的最小化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulation du contact avec adhérence en élasticité non linéaire entre deux solides déformables

Within the framework of finite deformations and using an approach to the kinematics of contact due to A. Curnier, Q.C. He and J.J. Téléga, we propose a spatial thermodynamic formulation for the problem coupling unilateral condition, friction and adhesion. The adhesion is characterized by its intensity introduced by M. Frémond. In the case of frictionless contact between an hyperelastic body and a plane rigid support, with a particular `static' law for the evolution of the intensity of adhesion, the problem can be reduced to a minimization one for which we can show the existence of a solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信