{"title":"两种可变形固体之间具有非线性弹性粘附的接触配方","authors":"A.S. Bretelle , M. Cocu , Y. Monerie","doi":"10.1016/S1287-4620(00)00124-1","DOIUrl":null,"url":null,"abstract":"<div><p>Within the framework of finite deformations and using an approach to the kinematics of contact due to A. Curnier, Q.C. He and J.J. Téléga, we propose a spatial thermodynamic formulation for the problem coupling unilateral condition, friction and adhesion. The adhesion is characterized by its intensity introduced by M. Frémond. In the case of frictionless contact between an hyperelastic body and a plane rigid support, with a particular `static' law for the evolution of the intensity of adhesion, the problem can be reduced to a minimization one for which we can show the existence of a solution.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 3","pages":"Pages 203-208"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00124-1","citationCount":"4","resultStr":"{\"title\":\"Formulation du contact avec adhérence en élasticité non linéaire entre deux solides déformables\",\"authors\":\"A.S. Bretelle , M. Cocu , Y. Monerie\",\"doi\":\"10.1016/S1287-4620(00)00124-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Within the framework of finite deformations and using an approach to the kinematics of contact due to A. Curnier, Q.C. He and J.J. Téléga, we propose a spatial thermodynamic formulation for the problem coupling unilateral condition, friction and adhesion. The adhesion is characterized by its intensity introduced by M. Frémond. In the case of frictionless contact between an hyperelastic body and a plane rigid support, with a particular `static' law for the evolution of the intensity of adhesion, the problem can be reduced to a minimization one for which we can show the existence of a solution.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"328 3\",\"pages\":\"Pages 203-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00124-1\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000001241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000001241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formulation du contact avec adhérence en élasticité non linéaire entre deux solides déformables
Within the framework of finite deformations and using an approach to the kinematics of contact due to A. Curnier, Q.C. He and J.J. Téléga, we propose a spatial thermodynamic formulation for the problem coupling unilateral condition, friction and adhesion. The adhesion is characterized by its intensity introduced by M. Frémond. In the case of frictionless contact between an hyperelastic body and a plane rigid support, with a particular `static' law for the evolution of the intensity of adhesion, the problem can be reduced to a minimization one for which we can show the existence of a solution.