由拼接运算产生的对易子代数

S. Sverchkov
{"title":"由拼接运算产生的对易子代数","authors":"S. Sverchkov","doi":"10.2478/s11533-014-0438-6","DOIUrl":null,"url":null,"abstract":"We prove that the variety of Lie algebras arising from splicing operation coincides with the variety CM of centreby-metabelian Lie algebras. Using these Lie algebras we find the minimal dimension algebras generated the variety CM and the variety of its associative envelope algebras. We study the splicing n-ary operation. We show that all n-ary (n > 2) commutator algebras arising from this operation are nilpotent of index 3. We investigate the generalization of the splicing n-ary operation, and we formulate a series of open problems.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"72 1","pages":"1687-1699"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutator algebras arising from splicing operations\",\"authors\":\"S. Sverchkov\",\"doi\":\"10.2478/s11533-014-0438-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the variety of Lie algebras arising from splicing operation coincides with the variety CM of centreby-metabelian Lie algebras. Using these Lie algebras we find the minimal dimension algebras generated the variety CM and the variety of its associative envelope algebras. We study the splicing n-ary operation. We show that all n-ary (n > 2) commutator algebras arising from this operation are nilpotent of index 3. We investigate the generalization of the splicing n-ary operation, and we formulate a series of open problems.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"72 1\",\"pages\":\"1687-1699\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-014-0438-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-014-0438-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了剪接产生的李代数的变化与中心-元李代数的变化CM是一致的。利用这些李代数,我们找到了最小维代数生成的CM及其关联包络代数的变化。我们研究了n进的拼接操作。我们证明了由该运算产生的所有n-ary (n > 2)对易子代数对指标3是幂零的。我们研究了n进拼接运算的推广,并给出了一系列开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commutator algebras arising from splicing operations
We prove that the variety of Lie algebras arising from splicing operation coincides with the variety CM of centreby-metabelian Lie algebras. Using these Lie algebras we find the minimal dimension algebras generated the variety CM and the variety of its associative envelope algebras. We study the splicing n-ary operation. We show that all n-ary (n > 2) commutator algebras arising from this operation are nilpotent of index 3. We investigate the generalization of the splicing n-ary operation, and we formulate a series of open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信