微矩阵的批处理Cholesky分解

F. Lemaitre, L. Lacassagne
{"title":"微矩阵的批处理Cholesky分解","authors":"F. Lemaitre, L. Lacassagne","doi":"10.1109/DASIP.2016.7853809","DOIUrl":null,"url":null,"abstract":"Many linear algebra libraries, such as the Intel MKL, Magma or Eigen, provide fast Cholesky factorization. These libraries are suited for big matrices but perform slowly on small ones. Even though State-of-the-Art studies begin to take an interest in small matrices, they usually feature a few hundreds rows. Fields like Computer Vision or High Energy Physics use tiny matrices. In this paper we show that it is possible to speedup the Cholesky factorization for tiny matrices by grouping them in batches and using highly specialized code. We provide High Level Transformations that accelerate the factorization for current Intel SIMD architectures (SSE, AVX2, KNC, AVX512). We achieve with these transformations combined with SIMD a speedup from 13 to 31 for the whole resolution compared to the naive code on a single core AVX2 machine and a speedup from 15 to 33 with multithreading compared to the multithreaded naive code.","PeriodicalId":6494,"journal":{"name":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"5 1","pages":"130-137"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Batched Cholesky factorization for tiny matrices\",\"authors\":\"F. Lemaitre, L. Lacassagne\",\"doi\":\"10.1109/DASIP.2016.7853809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many linear algebra libraries, such as the Intel MKL, Magma or Eigen, provide fast Cholesky factorization. These libraries are suited for big matrices but perform slowly on small ones. Even though State-of-the-Art studies begin to take an interest in small matrices, they usually feature a few hundreds rows. Fields like Computer Vision or High Energy Physics use tiny matrices. In this paper we show that it is possible to speedup the Cholesky factorization for tiny matrices by grouping them in batches and using highly specialized code. We provide High Level Transformations that accelerate the factorization for current Intel SIMD architectures (SSE, AVX2, KNC, AVX512). We achieve with these transformations combined with SIMD a speedup from 13 to 31 for the whole resolution compared to the naive code on a single core AVX2 machine and a speedup from 15 to 33 with multithreading compared to the multithreaded naive code.\",\"PeriodicalId\":6494,\"journal\":{\"name\":\"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"volume\":\"5 1\",\"pages\":\"130-137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASIP.2016.7853809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2016.7853809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

许多线性代数库,如Intel MKL、Magma或Eigen,都提供了快速的Cholesky分解。这些库适合于大矩阵,但在小矩阵上执行缓慢。尽管最先进的研究开始对小矩阵感兴趣,但它们通常只有几百行。像计算机视觉或高能物理这样的领域使用微小的矩阵。在本文中,我们证明了通过将小矩阵分组并使用高度专门化的代码来加速小矩阵的Cholesky分解是可能的。我们提供高级转换,加速当前英特尔SIMD架构(SSE, AVX2, KNC, AVX512)的因式分解。与单核AVX2机器上的原始代码相比,我们将这些转换与SIMD相结合,将整个分辨率的加速从13提高到31,与多线程的原始代码相比,将多线程的加速从15提高到33。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Batched Cholesky factorization for tiny matrices
Many linear algebra libraries, such as the Intel MKL, Magma or Eigen, provide fast Cholesky factorization. These libraries are suited for big matrices but perform slowly on small ones. Even though State-of-the-Art studies begin to take an interest in small matrices, they usually feature a few hundreds rows. Fields like Computer Vision or High Energy Physics use tiny matrices. In this paper we show that it is possible to speedup the Cholesky factorization for tiny matrices by grouping them in batches and using highly specialized code. We provide High Level Transformations that accelerate the factorization for current Intel SIMD architectures (SSE, AVX2, KNC, AVX512). We achieve with these transformations combined with SIMD a speedup from 13 to 31 for the whole resolution compared to the naive code on a single core AVX2 machine and a speedup from 15 to 33 with multithreading compared to the multithreaded naive code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信