二次碳化物添加对(Ti1-xTMx) c基20Ni金属陶瓷(TM = V, Mo, W)力学性能的影响:从头计算与实验结果相结合的研究

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Myungjae Kim, Hyo-Gyung Kim, Jin-Kyu Lee, Jihoo Kim, Sooah Kyung, J. Kwak, Jiwoong Kim
{"title":"二次碳化物添加对(Ti1-xTMx) c基20Ni金属陶瓷(TM = V, Mo, W)力学性能的影响:从头计算与实验结果相结合的研究","authors":"Myungjae Kim, Hyo-Gyung Kim, Jin-Kyu Lee, Jihoo Kim, Sooah Kyung, J. Kwak, Jiwoong Kim","doi":"10.1080/10667857.2023.2251293","DOIUrl":null,"url":null,"abstract":"ABSTRACT In recent years, significant efforts have been devoted towards the development of high-performance cermets with superior hardness and fracture toughness for engineering applications. In this study, a (Ti1-xTMx)C solid solution of a Ni cermet was prepared based on a combination of ab initio calculation and experimental results. The structural stability, mechanical properties, and microstructure of the cermet were investigated. A screening process was conducted using ab initio calculations to determine the optimal composition of (Ti1-xTMx)C (TM = V, Mo, and W) (x = 0–0.3125). The enhancement of the mechanical properties was analysed by calculating the electronic properties of the (Ti1-xTMx)C solid solutions. Additionally, we evaluated the powder morphology, microstructure, and mechanical properties of (Ti1-xTMx)C–20Ni by using experimental methods. The (Ti0.7W0.3)C–20Ni cermet exhibited enhanced hardness and fracture toughness in relation to conventional TiC–Ni cermets. Computational and experimental results indicated that the addition of secondary carbides improved the overall material properties. Graphical abstract","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"175 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of secondary carbide addition on the mechanical properties of (Ti1-xTMx)C-based 20Ni cermets (TM = V, Mo, and W): a study combining ab initio calculation and experimental results\",\"authors\":\"Myungjae Kim, Hyo-Gyung Kim, Jin-Kyu Lee, Jihoo Kim, Sooah Kyung, J. Kwak, Jiwoong Kim\",\"doi\":\"10.1080/10667857.2023.2251293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In recent years, significant efforts have been devoted towards the development of high-performance cermets with superior hardness and fracture toughness for engineering applications. In this study, a (Ti1-xTMx)C solid solution of a Ni cermet was prepared based on a combination of ab initio calculation and experimental results. The structural stability, mechanical properties, and microstructure of the cermet were investigated. A screening process was conducted using ab initio calculations to determine the optimal composition of (Ti1-xTMx)C (TM = V, Mo, and W) (x = 0–0.3125). The enhancement of the mechanical properties was analysed by calculating the electronic properties of the (Ti1-xTMx)C solid solutions. Additionally, we evaluated the powder morphology, microstructure, and mechanical properties of (Ti1-xTMx)C–20Ni by using experimental methods. The (Ti0.7W0.3)C–20Ni cermet exhibited enhanced hardness and fracture toughness in relation to conventional TiC–Ni cermets. Computational and experimental results indicated that the addition of secondary carbides improved the overall material properties. Graphical abstract\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"175 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2023.2251293\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2251293","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of secondary carbide addition on the mechanical properties of (Ti1-xTMx)C-based 20Ni cermets (TM = V, Mo, and W): a study combining ab initio calculation and experimental results
ABSTRACT In recent years, significant efforts have been devoted towards the development of high-performance cermets with superior hardness and fracture toughness for engineering applications. In this study, a (Ti1-xTMx)C solid solution of a Ni cermet was prepared based on a combination of ab initio calculation and experimental results. The structural stability, mechanical properties, and microstructure of the cermet were investigated. A screening process was conducted using ab initio calculations to determine the optimal composition of (Ti1-xTMx)C (TM = V, Mo, and W) (x = 0–0.3125). The enhancement of the mechanical properties was analysed by calculating the electronic properties of the (Ti1-xTMx)C solid solutions. Additionally, we evaluated the powder morphology, microstructure, and mechanical properties of (Ti1-xTMx)C–20Ni by using experimental methods. The (Ti0.7W0.3)C–20Ni cermet exhibited enhanced hardness and fracture toughness in relation to conventional TiC–Ni cermets. Computational and experimental results indicated that the addition of secondary carbides improved the overall material properties. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Technology
Materials Technology 工程技术-材料科学:综合
CiteScore
6.00
自引率
9.70%
发文量
105
审稿时长
8.7 months
期刊介绍: Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信