{"title":"基于李雅普诺夫直接法的非线性控制电压源整流器直流链路电容最小化","authors":"Mark Vygoder, R. Cuzner, Brian S R Armstrong","doi":"10.1109/ESARS-ITEC57127.2023.10114846","DOIUrl":null,"url":null,"abstract":"The increased switching frequency offered by Silicon Carbide (SiC) based Multi-chip Power Modules may allow designers to reduce the size and weight of passive elements while still meeting converter specifications. For the 3-phase Voltage Source Rectifier (VSR), as switching frequency increases, the DC-link capacitor may be reduce while maintaining the same voltage ripple. However, an often overlooked part in sizing the DC-link capacitance is the converter's stability. The use of conventional control methods, such PI-based controls, may lead to larger DC-link capacitance to prevent instability, minimizing the value proposition of Wide Band Gap-based power conversion. Applications like electrified shipboard or more electrical aircraft can be extremely sensitive to increases in size/weight due to limited space and/or significant annualized fuel costs. To this end, this paper explores, through simulation, a nonlinear control method based on Lyapunov's direct method published 25 years ago to minimize DC-link capacitance of an SiC-based VSR.","PeriodicalId":38493,"journal":{"name":"AUS","volume":"58 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimization of DC-Link Capacitance in Voltage Source Rectifiers through Nonlinear Controls Based on Lyapunov's Direct Method\",\"authors\":\"Mark Vygoder, R. Cuzner, Brian S R Armstrong\",\"doi\":\"10.1109/ESARS-ITEC57127.2023.10114846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increased switching frequency offered by Silicon Carbide (SiC) based Multi-chip Power Modules may allow designers to reduce the size and weight of passive elements while still meeting converter specifications. For the 3-phase Voltage Source Rectifier (VSR), as switching frequency increases, the DC-link capacitor may be reduce while maintaining the same voltage ripple. However, an often overlooked part in sizing the DC-link capacitance is the converter's stability. The use of conventional control methods, such PI-based controls, may lead to larger DC-link capacitance to prevent instability, minimizing the value proposition of Wide Band Gap-based power conversion. Applications like electrified shipboard or more electrical aircraft can be extremely sensitive to increases in size/weight due to limited space and/or significant annualized fuel costs. To this end, this paper explores, through simulation, a nonlinear control method based on Lyapunov's direct method published 25 years ago to minimize DC-link capacitance of an SiC-based VSR.\",\"PeriodicalId\":38493,\"journal\":{\"name\":\"AUS\",\"volume\":\"58 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESARS-ITEC57127.2023.10114846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS-ITEC57127.2023.10114846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Minimization of DC-Link Capacitance in Voltage Source Rectifiers through Nonlinear Controls Based on Lyapunov's Direct Method
The increased switching frequency offered by Silicon Carbide (SiC) based Multi-chip Power Modules may allow designers to reduce the size and weight of passive elements while still meeting converter specifications. For the 3-phase Voltage Source Rectifier (VSR), as switching frequency increases, the DC-link capacitor may be reduce while maintaining the same voltage ripple. However, an often overlooked part in sizing the DC-link capacitance is the converter's stability. The use of conventional control methods, such PI-based controls, may lead to larger DC-link capacitance to prevent instability, minimizing the value proposition of Wide Band Gap-based power conversion. Applications like electrified shipboard or more electrical aircraft can be extremely sensitive to increases in size/weight due to limited space and/or significant annualized fuel costs. To this end, this paper explores, through simulation, a nonlinear control method based on Lyapunov's direct method published 25 years ago to minimize DC-link capacitance of an SiC-based VSR.
期刊介绍:
Revista AUS es una publicación académica de corriente principal perteneciente a la comunidad de investigadores de la arquitectura y el urbanismo sostenibles, en el ámbito de las culturas locales y globales. La revista es semestral, cuenta con comité editorial y sus artículos son revisados por pares en el sistema de doble ciego. Periodicidad semestral.