SOC(充电状态)三芯铅动态电池模型

K. B. Pranata, Freygion Ogiek Rizal Sukma, M. Ghufron, Masruroh Masruroh
{"title":"SOC(充电状态)三芯铅动态电池模型","authors":"K. B. Pranata, Freygion Ogiek Rizal Sukma, M. Ghufron, Masruroh Masruroh","doi":"10.18860/NEU.V13I2.11835","DOIUrl":null,"url":null,"abstract":"Three-cells dynamic lead-acid battery has been widely manufactured as the latest secondary battery technology. It is being carried out by 10 cycles of charge-discharge treatment with a various types of SoC, such as 100% (Full charge 5100 mAh), 50% (2550 mAh), 25% (1275 mAh) and discharge current of 0.8A. This experiment aims to analyze the treatment of SOC conditions on the performance of the lead-acid battery. The cyclicality test has performed using a Battery Management System (BMS) by applying an electric current at charging 1 A and discharging 0.8A. The results of the SOC charging conditions at 100%, 50%, 25% respectively gave a difference in the value of voltage efficiency of 84%, 87%, 88%, capacity efficiency values of 84%, 80%, 69%, energy efficiency values of 70%, 70%, 62%. The 100% and 50% SOC treatments showed better performance and battery energy the 25% SOC treatment. This research can be a recommendation to predict the performance of the lead-acid battery model during the charging and discharging process.","PeriodicalId":17685,"journal":{"name":"Jurnal Neutrino","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOC (STATE of CHARGE) THREE-CELL LEAD DYNAMIC BATTERY MODEL\",\"authors\":\"K. B. Pranata, Freygion Ogiek Rizal Sukma, M. Ghufron, Masruroh Masruroh\",\"doi\":\"10.18860/NEU.V13I2.11835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-cells dynamic lead-acid battery has been widely manufactured as the latest secondary battery technology. It is being carried out by 10 cycles of charge-discharge treatment with a various types of SoC, such as 100% (Full charge 5100 mAh), 50% (2550 mAh), 25% (1275 mAh) and discharge current of 0.8A. This experiment aims to analyze the treatment of SOC conditions on the performance of the lead-acid battery. The cyclicality test has performed using a Battery Management System (BMS) by applying an electric current at charging 1 A and discharging 0.8A. The results of the SOC charging conditions at 100%, 50%, 25% respectively gave a difference in the value of voltage efficiency of 84%, 87%, 88%, capacity efficiency values of 84%, 80%, 69%, energy efficiency values of 70%, 70%, 62%. The 100% and 50% SOC treatments showed better performance and battery energy the 25% SOC treatment. This research can be a recommendation to predict the performance of the lead-acid battery model during the charging and discharging process.\",\"PeriodicalId\":17685,\"journal\":{\"name\":\"Jurnal Neutrino\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Neutrino\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18860/NEU.V13I2.11835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Neutrino","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/NEU.V13I2.11835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三芯动态铅酸电池作为一种最新的二次电池技术已得到广泛的应用。采用100%(充满5100毫安时)、50%(2550毫安时)、25%(1275毫安时)、放电电流为0.8A等不同类型的SoC进行10次循环充放电处理。本实验旨在分析处理荷电状态对铅酸电池性能的影响。循环性测试是使用电池管理系统(BMS)进行的,在充电1 a和放电0.8A时施加电流。结果表明,在100%、50%、25%充电条件下,电池的电压效率值分别为84%、87%、88%,容量效率值分别为84%、80%、69%,能量效率值分别为70%、70%、62%。100%和50%有机碳处理的性能和电池能量均优于25%有机碳处理。本研究可为预测铅酸电池模型在充放电过程中的性能提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOC (STATE of CHARGE) THREE-CELL LEAD DYNAMIC BATTERY MODEL
Three-cells dynamic lead-acid battery has been widely manufactured as the latest secondary battery technology. It is being carried out by 10 cycles of charge-discharge treatment with a various types of SoC, such as 100% (Full charge 5100 mAh), 50% (2550 mAh), 25% (1275 mAh) and discharge current of 0.8A. This experiment aims to analyze the treatment of SOC conditions on the performance of the lead-acid battery. The cyclicality test has performed using a Battery Management System (BMS) by applying an electric current at charging 1 A and discharging 0.8A. The results of the SOC charging conditions at 100%, 50%, 25% respectively gave a difference in the value of voltage efficiency of 84%, 87%, 88%, capacity efficiency values of 84%, 80%, 69%, energy efficiency values of 70%, 70%, 62%. The 100% and 50% SOC treatments showed better performance and battery energy the 25% SOC treatment. This research can be a recommendation to predict the performance of the lead-acid battery model during the charging and discharging process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信