{"title":"基于反向传播细化方案的交互式图像分割","authors":"Won-Dong Jang, Chang-Su Kim","doi":"10.1109/CVPR.2019.00544","DOIUrl":null,"url":null,"abstract":"An interactive image segmentation algorithm, which accepts user-annotations about a target object and the background, is proposed in this work. We convert user-annotations into interaction maps by measuring distances of each pixel to the annotated locations. Then, we perform the forward pass in a convolutional neural network, which outputs an initial segmentation map. However, the user-annotated locations can be mislabeled in the initial result. Therefore, we develop the backpropagating refinement scheme (BRS), which corrects the mislabeled pixels. Experimental results demonstrate that the proposed algorithm outperforms the conventional algorithms on four challenging datasets. Furthermore, we demonstrate the generality and applicability of BRS in other computer vision tasks, by transforming existing convolutional neural networks into user-interactive ones.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"20 1","pages":"5292-5301"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":"{\"title\":\"Interactive Image Segmentation via Backpropagating Refinement Scheme\",\"authors\":\"Won-Dong Jang, Chang-Su Kim\",\"doi\":\"10.1109/CVPR.2019.00544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interactive image segmentation algorithm, which accepts user-annotations about a target object and the background, is proposed in this work. We convert user-annotations into interaction maps by measuring distances of each pixel to the annotated locations. Then, we perform the forward pass in a convolutional neural network, which outputs an initial segmentation map. However, the user-annotated locations can be mislabeled in the initial result. Therefore, we develop the backpropagating refinement scheme (BRS), which corrects the mislabeled pixels. Experimental results demonstrate that the proposed algorithm outperforms the conventional algorithms on four challenging datasets. Furthermore, we demonstrate the generality and applicability of BRS in other computer vision tasks, by transforming existing convolutional neural networks into user-interactive ones.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"20 1\",\"pages\":\"5292-5301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactive Image Segmentation via Backpropagating Refinement Scheme
An interactive image segmentation algorithm, which accepts user-annotations about a target object and the background, is proposed in this work. We convert user-annotations into interaction maps by measuring distances of each pixel to the annotated locations. Then, we perform the forward pass in a convolutional neural network, which outputs an initial segmentation map. However, the user-annotated locations can be mislabeled in the initial result. Therefore, we develop the backpropagating refinement scheme (BRS), which corrects the mislabeled pixels. Experimental results demonstrate that the proposed algorithm outperforms the conventional algorithms on four challenging datasets. Furthermore, we demonstrate the generality and applicability of BRS in other computer vision tasks, by transforming existing convolutional neural networks into user-interactive ones.