改进边界的近似距离神谕

S. Chechik
{"title":"改进边界的近似距离神谕","authors":"S. Chechik","doi":"10.1145/2746539.2746562","DOIUrl":null,"url":null,"abstract":"A distance oracle is a compact data structure capable of quickly estimating distances in a given graph. In this paper we provide a new construction for distance oracles in general undirected weighted graphs. Our data structure, for any integer k, requires O( n1+1/k) space, guarantees a stretch of 2k-1, and answers any query in only O(1) time.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Approximate Distance Oracles with Improved Bounds\",\"authors\":\"S. Chechik\",\"doi\":\"10.1145/2746539.2746562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distance oracle is a compact data structure capable of quickly estimating distances in a given graph. In this paper we provide a new construction for distance oracles in general undirected weighted graphs. Our data structure, for any integer k, requires O( n1+1/k) space, guarantees a stretch of 2k-1, and answers any query in only O(1) time.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

距离oracle是一种紧凑的数据结构,能够快速估计给定图中的距离。本文给出了一般无向加权图中距离预言的一种新构造。对于任意整数k,我们的数据结构需要O(n1+1/k)空间,保证2k-1的延伸,并且在O(1)时间内回答任何查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Distance Oracles with Improved Bounds
A distance oracle is a compact data structure capable of quickly estimating distances in a given graph. In this paper we provide a new construction for distance oracles in general undirected weighted graphs. Our data structure, for any integer k, requires O( n1+1/k) space, guarantees a stretch of 2k-1, and answers any query in only O(1) time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信