{"title":"改进边界的近似距离神谕","authors":"S. Chechik","doi":"10.1145/2746539.2746562","DOIUrl":null,"url":null,"abstract":"A distance oracle is a compact data structure capable of quickly estimating distances in a given graph. In this paper we provide a new construction for distance oracles in general undirected weighted graphs. Our data structure, for any integer k, requires O( n1+1/k) space, guarantees a stretch of 2k-1, and answers any query in only O(1) time.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Approximate Distance Oracles with Improved Bounds\",\"authors\":\"S. Chechik\",\"doi\":\"10.1145/2746539.2746562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distance oracle is a compact data structure capable of quickly estimating distances in a given graph. In this paper we provide a new construction for distance oracles in general undirected weighted graphs. Our data structure, for any integer k, requires O( n1+1/k) space, guarantees a stretch of 2k-1, and answers any query in only O(1) time.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A distance oracle is a compact data structure capable of quickly estimating distances in a given graph. In this paper we provide a new construction for distance oracles in general undirected weighted graphs. Our data structure, for any integer k, requires O( n1+1/k) space, guarantees a stretch of 2k-1, and answers any query in only O(1) time.