{"title":"热质传递线性本构方程的幂概化,以及由此产生的动量传递、热量和扩散方程的各种写法","authors":"V. Pavlovsky","doi":"10.21638/11701/spbu10.2022.407","DOIUrl":null,"url":null,"abstract":"Currently, when solving problems of heat and mass transfer, linear constitutive equations are used - in hydrodynamics, the viscous stress tensor is proportional to the strain rate tensor (Newton's rheological ratio), in heat transfer, the heat flux density is linearly related to the temperature gradient (Fourier's heat conduction law), in mass transfer, the diffusion flux density proportional to the concentration gradient (Fick's law). When writing these linear governing equations, proportionality coefficients are used, which are called the viscosity coefficient, thermal conductivity coefficient and diffusion coefficient, respectively. Such constitutive equations are widely used to describe the processes of heat and mass transfer in a laminar flow regime. For turbulent flows, these equations are unsuitable, it is necessary to introduce into consideration the empirical turbulent coefficients of viscosity μt, thermal conductivity λt and diffusion Dt. However, to describe turbulent flows, it is possible to go in another way - to modify the linear constitutive relations by giving them a nonlinear power-law form. Two-parameter power-law generalizations of Newton's, Fourier's and Fick's formulas for shear stress, heat flux density and diffusion, which, depending on the value of the exponents, can be used to describe the processes of heat and mass transfer both in laminar and turbulent fluid flow. Also, this generalization can be used to describe the behavior of power-law fluids and flows of polymer solutions exhibiting the Toms effect.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"86 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power generalization of the linear constitutive equations of heat and mass transfer and the variants of writing the equations of momentum transfer, heat and diffusion arising from them\",\"authors\":\"V. Pavlovsky\",\"doi\":\"10.21638/11701/spbu10.2022.407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, when solving problems of heat and mass transfer, linear constitutive equations are used - in hydrodynamics, the viscous stress tensor is proportional to the strain rate tensor (Newton's rheological ratio), in heat transfer, the heat flux density is linearly related to the temperature gradient (Fourier's heat conduction law), in mass transfer, the diffusion flux density proportional to the concentration gradient (Fick's law). When writing these linear governing equations, proportionality coefficients are used, which are called the viscosity coefficient, thermal conductivity coefficient and diffusion coefficient, respectively. Such constitutive equations are widely used to describe the processes of heat and mass transfer in a laminar flow regime. For turbulent flows, these equations are unsuitable, it is necessary to introduce into consideration the empirical turbulent coefficients of viscosity μt, thermal conductivity λt and diffusion Dt. However, to describe turbulent flows, it is possible to go in another way - to modify the linear constitutive relations by giving them a nonlinear power-law form. Two-parameter power-law generalizations of Newton's, Fourier's and Fick's formulas for shear stress, heat flux density and diffusion, which, depending on the value of the exponents, can be used to describe the processes of heat and mass transfer both in laminar and turbulent fluid flow. Also, this generalization can be used to describe the behavior of power-law fluids and flows of polymer solutions exhibiting the Toms effect.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2022.407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2022.407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Power generalization of the linear constitutive equations of heat and mass transfer and the variants of writing the equations of momentum transfer, heat and diffusion arising from them
Currently, when solving problems of heat and mass transfer, linear constitutive equations are used - in hydrodynamics, the viscous stress tensor is proportional to the strain rate tensor (Newton's rheological ratio), in heat transfer, the heat flux density is linearly related to the temperature gradient (Fourier's heat conduction law), in mass transfer, the diffusion flux density proportional to the concentration gradient (Fick's law). When writing these linear governing equations, proportionality coefficients are used, which are called the viscosity coefficient, thermal conductivity coefficient and diffusion coefficient, respectively. Such constitutive equations are widely used to describe the processes of heat and mass transfer in a laminar flow regime. For turbulent flows, these equations are unsuitable, it is necessary to introduce into consideration the empirical turbulent coefficients of viscosity μt, thermal conductivity λt and diffusion Dt. However, to describe turbulent flows, it is possible to go in another way - to modify the linear constitutive relations by giving them a nonlinear power-law form. Two-parameter power-law generalizations of Newton's, Fourier's and Fick's formulas for shear stress, heat flux density and diffusion, which, depending on the value of the exponents, can be used to describe the processes of heat and mass transfer both in laminar and turbulent fluid flow. Also, this generalization can be used to describe the behavior of power-law fluids and flows of polymer solutions exhibiting the Toms effect.
期刊介绍:
The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.