最大宽度的等边小八边形

Christian Bingane, Charles Audet
{"title":"最大宽度的等边小八边形","authors":"Christian Bingane, Charles Audet","doi":"10.1090/mcom/3733","DOIUrl":null,"url":null,"abstract":"A small polygon is a polygon of unit diameter. The maximal width of an equilateral small polygon with $n=2^s$ vertices is not known when $s \\ge 3$. This paper solves the first open case and finds the optimal equilateral small octagon. Its width is approximately $3.24\\%$ larger than the width of the regular octagon: $\\cos(\\pi/8)$. In addition, the paper proposes a family of equilateral small $n$-gons, for $n=2^s$ with $s\\ge 4$, whose widths are within $O(1/n^4)$ of the maximal width.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"5 1","pages":"2027-2040"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The equilateral small octagon of maximal width\",\"authors\":\"Christian Bingane, Charles Audet\",\"doi\":\"10.1090/mcom/3733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A small polygon is a polygon of unit diameter. The maximal width of an equilateral small polygon with $n=2^s$ vertices is not known when $s \\\\ge 3$. This paper solves the first open case and finds the optimal equilateral small octagon. Its width is approximately $3.24\\\\%$ larger than the width of the regular octagon: $\\\\cos(\\\\pi/8)$. In addition, the paper proposes a family of equilateral small $n$-gons, for $n=2^s$ with $s\\\\ge 4$, whose widths are within $O(1/n^4)$ of the maximal width.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"5 1\",\"pages\":\"2027-2040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

小多边形是单位直径的多边形。具有$n=2^s$顶点的等边小多边形的最大宽度不知道,当$s \ge 3$。本文解决了第一种开放情况,找到了最优的等边小八边形。它的宽度大约$3.24\%$大于正八边形的宽度$\cos(\pi/8)$。此外,对于$n=2^s$和$s\ge 4$,本文提出了一类宽度在最大宽度$O(1/n^4)$以内的等边小的$n$ -gons。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The equilateral small octagon of maximal width
A small polygon is a polygon of unit diameter. The maximal width of an equilateral small polygon with $n=2^s$ vertices is not known when $s \ge 3$. This paper solves the first open case and finds the optimal equilateral small octagon. Its width is approximately $3.24\%$ larger than the width of the regular octagon: $\cos(\pi/8)$. In addition, the paper proposes a family of equilateral small $n$-gons, for $n=2^s$ with $s\ge 4$, whose widths are within $O(1/n^4)$ of the maximal width.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信