对不变子空间的限制的谱

D. Drivaliaris, N. Yannakakis
{"title":"对不变子空间的限制的谱","authors":"D. Drivaliaris, N. Yannakakis","doi":"10.7153/oam-2020-14-19","DOIUrl":null,"url":null,"abstract":"Let $X$ be a Banach space, $A\\in B(X)$ and $M$ be an invariant subspace of $A$. We present an alternative proof that, if the spectrum of the restriction of $A$ to $M$ contains a point that is in any given hole in the spectrum of $A$, then the entire hole is in the spectrum of the restriction.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The spectrum of the restriction to an invariant subspace\",\"authors\":\"D. Drivaliaris, N. Yannakakis\",\"doi\":\"10.7153/oam-2020-14-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a Banach space, $A\\\\in B(X)$ and $M$ be an invariant subspace of $A$. We present an alternative proof that, if the spectrum of the restriction of $A$ to $M$ contains a point that is in any given hole in the spectrum of $A$, then the entire hole is in the spectrum of the restriction.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/oam-2020-14-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/oam-2020-14-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$X$是一个巴拿赫空间,$ a \in B(X)$, $M$是$ a $的不变子空间。我们给出了另一种证明,如果$A$到$M$的限制的谱中包含一个点,该点在$A$的谱中的任何给定洞中,则整个洞都在该限制的谱中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spectrum of the restriction to an invariant subspace
Let $X$ be a Banach space, $A\in B(X)$ and $M$ be an invariant subspace of $A$. We present an alternative proof that, if the spectrum of the restriction of $A$ to $M$ contains a point that is in any given hole in the spectrum of $A$, then the entire hole is in the spectrum of the restriction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信