Atta Ullah, Nasser Ojaroudi, M. Abdul-Al, W. Manan, A. Salisu, I. Gharbia, Chan Hwang, R. Abd‐Alhameed
{"title":"面向5G智能手机移动通信的双频MIMO天线设计","authors":"Atta Ullah, Nasser Ojaroudi, M. Abdul-Al, W. Manan, A. Salisu, I. Gharbia, Chan Hwang, R. Abd‐Alhameed","doi":"10.51173/jt.v5i2.1259","DOIUrl":null,"url":null,"abstract":"In this research, an innovative L-shape slot that is fed by F-shape dual-band six-Elements multiple-input multiple-output (MIMO) antenna for mobile phones that operate in a 5G spectrum is demonstrated. This proposed antenna has six antenna elements that can operate in dual band sub-6 GHz for 5G band spectrums at 3.42–3.77 GHz and at 5.30–5.63 GHz. Every antenna element has an L-shaped slot in the ground fed by the same feedline that support the matching of the F-shaped microstrip lines. Important features of the anticipated layout are examined. It provides excellent efficiency at the operation band, appropriate isolation, adequate radiation coverage, and good S-parameters. Ant 3's provided the maximum return loss at 3.6 GHz which is -35 dB, whereas Ant 5 and Ant 6 provide the highest return losses at 5.4 GHz which is -38dB of the suggested dual-band frequency of 5G smartphones. To validate the exactness of the constructed MIMO antenna performances, the sample prototyping and experimentally measured outcomes were carried out in the Lab. Both simulated and measure result assessments revealed an extremely excellent understanding of both results. satisfactory input impedance and mutual coupling characteristics. Future smartphones can leverage the proposed design for high data-rate cellular connectivity because of these appealing properties.","PeriodicalId":39617,"journal":{"name":"Journal of Biomolecular Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Band MIMO Antenna Design for 5G Smartphones Mobile Communications\",\"authors\":\"Atta Ullah, Nasser Ojaroudi, M. Abdul-Al, W. Manan, A. Salisu, I. Gharbia, Chan Hwang, R. Abd‐Alhameed\",\"doi\":\"10.51173/jt.v5i2.1259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, an innovative L-shape slot that is fed by F-shape dual-band six-Elements multiple-input multiple-output (MIMO) antenna for mobile phones that operate in a 5G spectrum is demonstrated. This proposed antenna has six antenna elements that can operate in dual band sub-6 GHz for 5G band spectrums at 3.42–3.77 GHz and at 5.30–5.63 GHz. Every antenna element has an L-shaped slot in the ground fed by the same feedline that support the matching of the F-shaped microstrip lines. Important features of the anticipated layout are examined. It provides excellent efficiency at the operation band, appropriate isolation, adequate radiation coverage, and good S-parameters. Ant 3's provided the maximum return loss at 3.6 GHz which is -35 dB, whereas Ant 5 and Ant 6 provide the highest return losses at 5.4 GHz which is -38dB of the suggested dual-band frequency of 5G smartphones. To validate the exactness of the constructed MIMO antenna performances, the sample prototyping and experimentally measured outcomes were carried out in the Lab. Both simulated and measure result assessments revealed an extremely excellent understanding of both results. satisfactory input impedance and mutual coupling characteristics. Future smartphones can leverage the proposed design for high data-rate cellular connectivity because of these appealing properties.\",\"PeriodicalId\":39617,\"journal\":{\"name\":\"Journal of Biomolecular Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51173/jt.v5i2.1259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51173/jt.v5i2.1259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Dual-Band MIMO Antenna Design for 5G Smartphones Mobile Communications
In this research, an innovative L-shape slot that is fed by F-shape dual-band six-Elements multiple-input multiple-output (MIMO) antenna for mobile phones that operate in a 5G spectrum is demonstrated. This proposed antenna has six antenna elements that can operate in dual band sub-6 GHz for 5G band spectrums at 3.42–3.77 GHz and at 5.30–5.63 GHz. Every antenna element has an L-shaped slot in the ground fed by the same feedline that support the matching of the F-shaped microstrip lines. Important features of the anticipated layout are examined. It provides excellent efficiency at the operation band, appropriate isolation, adequate radiation coverage, and good S-parameters. Ant 3's provided the maximum return loss at 3.6 GHz which is -35 dB, whereas Ant 5 and Ant 6 provide the highest return losses at 5.4 GHz which is -38dB of the suggested dual-band frequency of 5G smartphones. To validate the exactness of the constructed MIMO antenna performances, the sample prototyping and experimentally measured outcomes were carried out in the Lab. Both simulated and measure result assessments revealed an extremely excellent understanding of both results. satisfactory input impedance and mutual coupling characteristics. Future smartphones can leverage the proposed design for high data-rate cellular connectivity because of these appealing properties.
期刊介绍:
The Journal of Biomolecular Techniques is a peer-reviewed publication issued five times a year by the Association of Biomolecular Resource Facilities. The Journal was established to promote the central role biotechnology plays in contemporary research activities, to disseminate information among biomolecular resource facilities, and to communicate the biotechnology research conducted by the Association’s Research Groups and members, as well as other investigators.