{"title":"具有零副本集成的高效数据管理和统计","authors":"Jonathan Lajus, H. Mühleisen","doi":"10.1145/2618243.2618265","DOIUrl":null,"url":null,"abstract":"Statistical analysts have long been struggling with evergrowing data volumes. While specialized data management systems such as relational databases would be able to handle the data, statistical analysis tools are far more convenient to express complex data analyses. An integration of these two classes of systems has the potential to overcome the data management issue while at the same time keeping analysis convenient. However, one must keep a careful eye on implementation overheads such as serialization. In this paper, we propose the in-process integration of data management and analytical tools. Furthermore, we argue that a zero-copy integration is feasible due to the omnipresence of C-style arrays containing native types. We discuss the general concept and present a prototype of this integration based on the columnar relational database MonetDB and the R environment for statistical computing. We evaluate the performance of this prototype in a series of micro-benchmarks of common data management tasks.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"27 1","pages":"12:1-12:10"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Efficient data management and statistics with zero-copy integration\",\"authors\":\"Jonathan Lajus, H. Mühleisen\",\"doi\":\"10.1145/2618243.2618265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical analysts have long been struggling with evergrowing data volumes. While specialized data management systems such as relational databases would be able to handle the data, statistical analysis tools are far more convenient to express complex data analyses. An integration of these two classes of systems has the potential to overcome the data management issue while at the same time keeping analysis convenient. However, one must keep a careful eye on implementation overheads such as serialization. In this paper, we propose the in-process integration of data management and analytical tools. Furthermore, we argue that a zero-copy integration is feasible due to the omnipresence of C-style arrays containing native types. We discuss the general concept and present a prototype of this integration based on the columnar relational database MonetDB and the R environment for statistical computing. We evaluate the performance of this prototype in a series of micro-benchmarks of common data management tasks.\",\"PeriodicalId\":74773,\"journal\":{\"name\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"volume\":\"27 1\",\"pages\":\"12:1-12:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2618243.2618265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient data management and statistics with zero-copy integration
Statistical analysts have long been struggling with evergrowing data volumes. While specialized data management systems such as relational databases would be able to handle the data, statistical analysis tools are far more convenient to express complex data analyses. An integration of these two classes of systems has the potential to overcome the data management issue while at the same time keeping analysis convenient. However, one must keep a careful eye on implementation overheads such as serialization. In this paper, we propose the in-process integration of data management and analytical tools. Furthermore, we argue that a zero-copy integration is feasible due to the omnipresence of C-style arrays containing native types. We discuss the general concept and present a prototype of this integration based on the columnar relational database MonetDB and the R environment for statistical computing. We evaluate the performance of this prototype in a series of micro-benchmarks of common data management tasks.