深度,高度和DNR度

IF 0.7 4区 数学
Philippe Moser, F. Stephan
{"title":"深度,高度和DNR度","authors":"Philippe Moser, F. Stephan","doi":"10.23638/DMTCS-19-4-2","DOIUrl":null,"url":null,"abstract":"We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of \\(O(1)\\text {-deep}_K\\), \\(O(1)\\text {-deep}_C\\), order\\(\\text {-deep}_K\\) and order\\(\\text {-deep}_C\\) sequences. Our main results are that Martin-Lof random sets are not order\\(\\text {-deep}_C\\), that every many-one degree contains a set which is not \\(O(1)\\text {-deep}_C\\), that \\(O(1)\\text {-deep}_C\\) sets and order\\(\\text {-deep}_K\\) sets have high or DNR Turing degree and that no K-trival set is \\(O(1)\\text {-deep}_K\\).","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Depth, Highness and DNR degrees\",\"authors\":\"Philippe Moser, F. Stephan\",\"doi\":\"10.23638/DMTCS-19-4-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of \\\\(O(1)\\\\text {-deep}_K\\\\), \\\\(O(1)\\\\text {-deep}_C\\\\), order\\\\(\\\\text {-deep}_K\\\\) and order\\\\(\\\\text {-deep}_C\\\\) sequences. Our main results are that Martin-Lof random sets are not order\\\\(\\\\text {-deep}_C\\\\), that every many-one degree contains a set which is not \\\\(O(1)\\\\text {-deep}_C\\\\), that \\\\(O(1)\\\\text {-deep}_C\\\\) sets and order\\\\(\\\\text {-deep}_K\\\\) sets have high or DNR Turing degree and that no K-trival set is \\\\(O(1)\\\\text {-deep}_K\\\\).\",\"PeriodicalId\":55175,\"journal\":{\"name\":\"Discrete Mathematics and Theoretical Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Theoretical Computer Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.23638/DMTCS-19-4-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23638/DMTCS-19-4-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们在递归理论的背景下研究了Bennett深度序列;我们特别研究了\(O(1)\text {-deep}_K\)、\(O(1)\text {-deep}_C\)、有序\(\text {-deep}_K\)和有序\(\text {-deep}_C\)序列的概念。我们的主要结果是Martin-Lof随机集不是有序的\(\text {-deep}_C\),每个多一度包含一个不是\(O(1)\text {-deep}_C\)的集,\(O(1)\text {-deep}_C\)集和有序的\(\text {-deep}_K\)集具有高或DNR图灵度,没有K-trival集是\(O(1)\text {-deep}_K\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth, Highness and DNR degrees
We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of \(O(1)\text {-deep}_K\), \(O(1)\text {-deep}_C\), order\(\text {-deep}_K\) and order\(\text {-deep}_C\) sequences. Our main results are that Martin-Lof random sets are not order\(\text {-deep}_C\), that every many-one degree contains a set which is not \(O(1)\text {-deep}_C\), that \(O(1)\text {-deep}_C\) sets and order\(\text {-deep}_K\) sets have high or DNR Turing degree and that no K-trival set is \(O(1)\text {-deep}_K\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信