一个由Frobenius平方固定的非平凡束族

Yves Laszlo
{"title":"一个由Frobenius平方固定的非平凡束族","authors":"Yves Laszlo","doi":"10.1016/S0764-4442(01)02109-7","DOIUrl":null,"url":null,"abstract":"<div><p>One shows the existence of a smooth projective curve over <span><math><mtext>F</mtext><msub><mi></mi><mn>2</mn></msub></math></span> and of representations of the arithmetic fundamental group of <em>X</em>⊗<em>k</em> with values in <span><math><mtext>SL</mtext><msub><mi></mi><mn>2</mn></msub><mtext>(k[[t]])</mtext></math></span>, with <em>k</em> suitable finite field of characteristic 2, such that the image of the geometric fundamental group is infinite. This gives a negative answer to a question of A.J. de Jong.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 651-656"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02109-7","citationCount":"12","resultStr":"{\"title\":\"A non-trivial family of bundles fixed by the square of Frobenius\",\"authors\":\"Yves Laszlo\",\"doi\":\"10.1016/S0764-4442(01)02109-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One shows the existence of a smooth projective curve over <span><math><mtext>F</mtext><msub><mi></mi><mn>2</mn></msub></math></span> and of representations of the arithmetic fundamental group of <em>X</em>⊗<em>k</em> with values in <span><math><mtext>SL</mtext><msub><mi></mi><mn>2</mn></msub><mtext>(k[[t]])</mtext></math></span>, with <em>k</em> suitable finite field of characteristic 2, such that the image of the geometric fundamental group is infinite. This gives a negative answer to a question of A.J. de Jong.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 7\",\"pages\":\"Pages 651-656\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02109-7\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

一个证明了F2上的光滑投影曲线的存在性,以及X⊗k的算术基本群具有SL2(k[[t]])中值的表示的存在性,具有k个特征2的合适有限域,使得几何基本群的像是无限的。这对德容的一个问题给出了否定的回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A non-trivial family of bundles fixed by the square of Frobenius

One shows the existence of a smooth projective curve over F2 and of representations of the arithmetic fundamental group of Xk with values in SL2(k[[t]]), with k suitable finite field of characteristic 2, such that the image of the geometric fundamental group is infinite. This gives a negative answer to a question of A.J. de Jong.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信