定量抽象细化

Pavol Cerný, T. Henzinger, Arjun Radhakrishna
{"title":"定量抽象细化","authors":"Pavol Cerný, T. Henzinger, Arjun Radhakrishna","doi":"10.1145/2429069.2429085","DOIUrl":null,"url":null,"abstract":"We propose a general framework for abstraction with respect to quantitative properties, such as worst-case execution time, or power consumption. Our framework provides a systematic way for counter-example guided abstraction refinement for quantitative properties. The salient aspect of the framework is that it allows anytime verification, that is, verification algorithms that can be stopped at any time (for example, due to exhaustion of memory), and report approximations that improve monotonically when the algorithms are given more time.\n We instantiate the framework with a number of quantitative abstractions and refinement schemes, which differ in terms of how much quantitative information they keep from the original system. We introduce both state-based and trace-based quantitative abstractions, and we describe conditions that define classes of quantitative properties for which the abstractions provide over-approximations. We give algorithms for evaluating the quantitative properties on the abstract systems. We present algorithms for counter-example based refinements for quantitative properties for both state-based and segment-based abstractions. We perform a case study on worst-case execution time of executables to evaluate the anytime verification aspect and the quantitative abstractions we proposed.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"38 1","pages":"115-128"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Quantitative abstraction refinement\",\"authors\":\"Pavol Cerný, T. Henzinger, Arjun Radhakrishna\",\"doi\":\"10.1145/2429069.2429085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a general framework for abstraction with respect to quantitative properties, such as worst-case execution time, or power consumption. Our framework provides a systematic way for counter-example guided abstraction refinement for quantitative properties. The salient aspect of the framework is that it allows anytime verification, that is, verification algorithms that can be stopped at any time (for example, due to exhaustion of memory), and report approximations that improve monotonically when the algorithms are given more time.\\n We instantiate the framework with a number of quantitative abstractions and refinement schemes, which differ in terms of how much quantitative information they keep from the original system. We introduce both state-based and trace-based quantitative abstractions, and we describe conditions that define classes of quantitative properties for which the abstractions provide over-approximations. We give algorithms for evaluating the quantitative properties on the abstract systems. We present algorithms for counter-example based refinements for quantitative properties for both state-based and segment-based abstractions. We perform a case study on worst-case execution time of executables to evaluate the anytime verification aspect and the quantitative abstractions we proposed.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":\"38 1\",\"pages\":\"115-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2429069.2429085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2429069.2429085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

我们提出了一个关于定量属性的抽象的一般框架,比如最坏情况下的执行时间,或者功耗。我们的框架为定量性质的反例引导抽象细化提供了一种系统的方法。该框架的突出方面是它允许随时验证,也就是说,验证算法可以在任何时候停止(例如,由于内存耗尽),并且当算法被给予更多时间时,报告的近似值会单调地改进。我们用大量的定量抽象和细化方案实例化框架,这些方案的不同之处在于它们从原始系统中保留了多少定量信息。我们引入了基于状态和基于跟踪的定量抽象,并描述了定义定量属性类的条件,抽象为这些类提供了过度近似。给出了评价抽象系统定量性质的算法。我们提出了基于反例的算法,用于基于状态和基于段的抽象的定量属性的改进。我们对可执行文件的最坏情况执行时间进行了案例研究,以评估随时验证方面和我们提出的定量抽象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative abstraction refinement
We propose a general framework for abstraction with respect to quantitative properties, such as worst-case execution time, or power consumption. Our framework provides a systematic way for counter-example guided abstraction refinement for quantitative properties. The salient aspect of the framework is that it allows anytime verification, that is, verification algorithms that can be stopped at any time (for example, due to exhaustion of memory), and report approximations that improve monotonically when the algorithms are given more time. We instantiate the framework with a number of quantitative abstractions and refinement schemes, which differ in terms of how much quantitative information they keep from the original system. We introduce both state-based and trace-based quantitative abstractions, and we describe conditions that define classes of quantitative properties for which the abstractions provide over-approximations. We give algorithms for evaluating the quantitative properties on the abstract systems. We present algorithms for counter-example based refinements for quantitative properties for both state-based and segment-based abstractions. We perform a case study on worst-case execution time of executables to evaluate the anytime verification aspect and the quantitative abstractions we proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信