3D即时策略游戏的进化微系统

T. DeWitt, S. Louis, Siming Liu
{"title":"3D即时策略游戏的进化微系统","authors":"T. DeWitt, S. Louis, Siming Liu","doi":"10.1109/CIG.2016.7860437","DOIUrl":null,"url":null,"abstract":"This paper extends prior work in generating two dimensional micro for Real-Time Strategy games to three dimensions. We extend our influence map and potential fields representation to three dimensions and compare two hill-climbers with a genetic algorithm on the problem of generating high performance influence map, potential field, and reactive control parameters that control the behavior of units in an open source Real-Time Strategy game. Results indicate that genetic algorithms evolve better behaviors for ranged units that inflict damage on enemies while kiting to avoid damage. Additionally, genetic algorithms evolve better behaviors for melee units that concentrate firepower on selective enemies to decrease the opposing army's effectiveness. Evolved behaviors, particularly for ranged units, generalize well to new scenarios. Our work thus provides evidence for the viability of an influence map and potential fields based representation for reactive control algorithms in games, 3D simulations, and aerial vehicle swarms.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"14 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evolving micro for 3D Real-Time Strategy games\",\"authors\":\"T. DeWitt, S. Louis, Siming Liu\",\"doi\":\"10.1109/CIG.2016.7860437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends prior work in generating two dimensional micro for Real-Time Strategy games to three dimensions. We extend our influence map and potential fields representation to three dimensions and compare two hill-climbers with a genetic algorithm on the problem of generating high performance influence map, potential field, and reactive control parameters that control the behavior of units in an open source Real-Time Strategy game. Results indicate that genetic algorithms evolve better behaviors for ranged units that inflict damage on enemies while kiting to avoid damage. Additionally, genetic algorithms evolve better behaviors for melee units that concentrate firepower on selective enemies to decrease the opposing army's effectiveness. Evolved behaviors, particularly for ranged units, generalize well to new scenarios. Our work thus provides evidence for the viability of an influence map and potential fields based representation for reactive control algorithms in games, 3D simulations, and aerial vehicle swarms.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"14 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将生成实时策略游戏的二维微系统的先前工作扩展到三维。我们将我们的影响图和势场表示扩展到三维,并将两个爬山者与遗传算法进行比较,以生成高性能的影响图、势场和控制开源实时战略游戏中单位行为的反应性控制参数。结果表明,遗传算法进化出了更好的行为,可以让远程单位在放风筝时对敌人造成伤害以避免伤害。此外,遗传算法进化出更好的近战单位行为,将火力集中在选定的敌人身上,从而降低对方军队的效率。进化的行为,特别是远程单位,可以很好地推广到新的场景中。因此,我们的工作为游戏、3D模拟和飞行器群中基于反应性控制算法的影响图和势场表示的可行性提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving micro for 3D Real-Time Strategy games
This paper extends prior work in generating two dimensional micro for Real-Time Strategy games to three dimensions. We extend our influence map and potential fields representation to three dimensions and compare two hill-climbers with a genetic algorithm on the problem of generating high performance influence map, potential field, and reactive control parameters that control the behavior of units in an open source Real-Time Strategy game. Results indicate that genetic algorithms evolve better behaviors for ranged units that inflict damage on enemies while kiting to avoid damage. Additionally, genetic algorithms evolve better behaviors for melee units that concentrate firepower on selective enemies to decrease the opposing army's effectiveness. Evolved behaviors, particularly for ranged units, generalize well to new scenarios. Our work thus provides evidence for the viability of an influence map and potential fields based representation for reactive control algorithms in games, 3D simulations, and aerial vehicle swarms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信