镍在形成结构中的作用,提高了反应堆结构材料的使用性能

Q4 Energy
E. Kuleshova, I. Fedotov, N. Stepanov, A. Frolov, D. A. Maltsev, D. Safonov
{"title":"镍在形成结构中的作用,提高了反应堆结构材料的使用性能","authors":"E. Kuleshova, I. Fedotov, N. Stepanov, A. Frolov, D. A. Maltsev, D. Safonov","doi":"10.26583/npe.2022.3.11","DOIUrl":null,"url":null,"abstract":"Nickel is an essential alloying element in steels used as structural materials in the most common nuclear power reactors of the VVER type. The paper considers reviews the results of structural studies of traditional and advanced materials of the vessels and internals of VVER-type reactors with high nickel contents in their compositions. It is shown that an increased nickel content (up to 5 wt.%) in the steels of VVER pressure vessels contributes to the formation of a more dispersed structure with a smaller size of substructural elements and an increased density of dislocations, as well as a higher volume density of carbide phases. The revealed features of the structure of the reactor pressure vessel steel with high nickel content have the prerequisites for improving the strength and viscoplastic properties due to the increased number of barriers both for the dislocation motion and brittle crack propagation. Using the example of materials for VVER internals, it is shown that the nickel content increased in them up to 25 wt.% contributes to an increase in the volume density of radiation defects (dislocation loops of various types) and radiation-induced phase precipitates (G-phase). As nickel increases from 10 to 25 wt.%, there is a tendency to reduce swelling, which contributes to less shape change of the components of the reactor vessel internals. At the same time, in the steel with the highest nickel content, the highest nickel content was found in the near-boundary regions of the matrix, which contributes to greater austenite stability and a lower probability of the formation of an embrittling α-phase. The data obtained in the work on the effect of nickel alloying on the steel structural phase state and service characteristics were used in the development of new materials for the vessels and internals of advanced reactors.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Role of Nickel in Forming a Structure Providing Increased Service Properties of Reactor Structural Materials\",\"authors\":\"E. Kuleshova, I. Fedotov, N. Stepanov, A. Frolov, D. A. Maltsev, D. Safonov\",\"doi\":\"10.26583/npe.2022.3.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nickel is an essential alloying element in steels used as structural materials in the most common nuclear power reactors of the VVER type. The paper considers reviews the results of structural studies of traditional and advanced materials of the vessels and internals of VVER-type reactors with high nickel contents in their compositions. It is shown that an increased nickel content (up to 5 wt.%) in the steels of VVER pressure vessels contributes to the formation of a more dispersed structure with a smaller size of substructural elements and an increased density of dislocations, as well as a higher volume density of carbide phases. The revealed features of the structure of the reactor pressure vessel steel with high nickel content have the prerequisites for improving the strength and viscoplastic properties due to the increased number of barriers both for the dislocation motion and brittle crack propagation. Using the example of materials for VVER internals, it is shown that the nickel content increased in them up to 25 wt.% contributes to an increase in the volume density of radiation defects (dislocation loops of various types) and radiation-induced phase precipitates (G-phase). As nickel increases from 10 to 25 wt.%, there is a tendency to reduce swelling, which contributes to less shape change of the components of the reactor vessel internals. At the same time, in the steel with the highest nickel content, the highest nickel content was found in the near-boundary regions of the matrix, which contributes to greater austenite stability and a lower probability of the formation of an embrittling α-phase. The data obtained in the work on the effect of nickel alloying on the steel structural phase state and service characteristics were used in the development of new materials for the vessels and internals of advanced reactors.\",\"PeriodicalId\":37826,\"journal\":{\"name\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26583/npe.2022.3.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2022.3.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

摘要

镍是在最常见的VVER型核动力反应堆中用作结构材料的钢中必不可少的合金元素。本文综述了高含镍vver型反应器容器和内部的传统材料和先进材料的结构研究成果。结果表明,VVER压力容器钢中镍含量的增加(高达5 wt.%)有助于形成更分散的结构,其亚结构元素尺寸更小,位错密度更高,碳化物相体积密度更高。高镍反应器压力容器钢的结构特征为提高其强度和粘塑性性能提供了先决条件,这是由于位错运动和脆性裂纹扩展的屏障数量增加。以VVER内件材料为例,镍含量增加到25wt .%时,辐射缺陷(各种类型的位错环)和辐射诱导相沉淀(g相)的体积密度增加。当镍从10%增加到25wt .%时,有减少膨胀的趋势,这有助于减少反应堆容器内部部件的形状变化。同时,在镍含量最高的钢中,镍含量最高的是在基体的近边界区域,这有助于提高奥氏体的稳定性和形成脆化α-相的可能性较低。研究镍合金化对钢结构相态和使用特性影响的数据,用于先进反应堆容器和内部新材料的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Nickel in Forming a Structure Providing Increased Service Properties of Reactor Structural Materials
Nickel is an essential alloying element in steels used as structural materials in the most common nuclear power reactors of the VVER type. The paper considers reviews the results of structural studies of traditional and advanced materials of the vessels and internals of VVER-type reactors with high nickel contents in their compositions. It is shown that an increased nickel content (up to 5 wt.%) in the steels of VVER pressure vessels contributes to the formation of a more dispersed structure with a smaller size of substructural elements and an increased density of dislocations, as well as a higher volume density of carbide phases. The revealed features of the structure of the reactor pressure vessel steel with high nickel content have the prerequisites for improving the strength and viscoplastic properties due to the increased number of barriers both for the dislocation motion and brittle crack propagation. Using the example of materials for VVER internals, it is shown that the nickel content increased in them up to 25 wt.% contributes to an increase in the volume density of radiation defects (dislocation loops of various types) and radiation-induced phase precipitates (G-phase). As nickel increases from 10 to 25 wt.%, there is a tendency to reduce swelling, which contributes to less shape change of the components of the reactor vessel internals. At the same time, in the steel with the highest nickel content, the highest nickel content was found in the near-boundary regions of the matrix, which contributes to greater austenite stability and a lower probability of the formation of an embrittling α-phase. The data obtained in the work on the effect of nickel alloying on the steel structural phase state and service characteristics were used in the development of new materials for the vessels and internals of advanced reactors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika Energy-Nuclear Energy and Engineering
CiteScore
0.40
自引率
0.00%
发文量
30
期刊介绍: The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信