一个完全非交换的painlevelⅱ层次:与Fredholm行列式相关的Lax对和解

Sofia Tarricone
{"title":"一个完全非交换的painlevelⅱ层次:与Fredholm行列式相关的Lax对和解","authors":"Sofia Tarricone","doi":"10.3842/sigma.2021.002","DOIUrl":null,"url":null,"abstract":"We consider Fredholm determinants of matrix convolution operators associated to matrix versions of the $n - $th Airy functions. Using the theory of integrable operators, we relate them to a fully noncommutative Painleve II hierarchy, defined through a matrix valued version of the Lenard operators. In particular, the Riemann-Hilbert technique used to study these integrable operators allows to find a Lax pair for each member of the hierarchy. Finally, the coefficients of the Lax matrices are explicitely written in terms of these matrix valued Lenard operators and some solution of the hierarchy are written in terms of Fredholm determinants of the square of the matrix Airy convolution operators.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants\",\"authors\":\"Sofia Tarricone\",\"doi\":\"10.3842/sigma.2021.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Fredholm determinants of matrix convolution operators associated to matrix versions of the $n - $th Airy functions. Using the theory of integrable operators, we relate them to a fully noncommutative Painleve II hierarchy, defined through a matrix valued version of the Lenard operators. In particular, the Riemann-Hilbert technique used to study these integrable operators allows to find a Lax pair for each member of the hierarchy. Finally, the coefficients of the Lax matrices are explicitely written in terms of these matrix valued Lenard operators and some solution of the hierarchy are written in terms of Fredholm determinants of the square of the matrix Airy convolution operators.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2021.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2021.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑矩阵卷积算子的Fredholm行列式与n -第n个Airy函数的矩阵版本相关。利用可积算子的理论,我们将它们与完全非交换的painlelevel II层次联系起来,该层次是通过Lenard算子的矩阵值版本来定义的。特别地,用于研究这些可积算子的黎曼-希尔伯特技术允许为层次中的每个成员找到一个Lax对。最后,用矩阵值Lenard算子显式地表示Lax矩阵的系数,并用矩阵Airy卷积算子的平方的Fredholm行列式表示该层次的某些解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants
We consider Fredholm determinants of matrix convolution operators associated to matrix versions of the $n - $th Airy functions. Using the theory of integrable operators, we relate them to a fully noncommutative Painleve II hierarchy, defined through a matrix valued version of the Lenard operators. In particular, the Riemann-Hilbert technique used to study these integrable operators allows to find a Lax pair for each member of the hierarchy. Finally, the coefficients of the Lax matrices are explicitely written in terms of these matrix valued Lenard operators and some solution of the hierarchy are written in terms of Fredholm determinants of the square of the matrix Airy convolution operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信