保持Hermite矩阵张量积逆的线性映射

Q3 Mathematics
Shuang Yan, Yang Zhang
{"title":"保持Hermite矩阵张量积逆的线性映射","authors":"Shuang Yan, Yang Zhang","doi":"10.5539/jmr.v15n4p75","DOIUrl":null,"url":null,"abstract":"Let C be a complex field, H_{m_1m_2} be a linear space of tensor products of Hermite matrices H_{m_1}⊗H_{m_2} over C , and suppose m_{1}, m_2≥2 are positive integers. A linear map f :H_{m_1m_2} → H_n is called a linear inverse preserver if f( X_{1} ⊗X_{2} )^{-1}= f( X_{1}⊗X_{2}) ^{-1} ) for arbitrary invertible matrix X_{1} ⊗ X_{2}∈ H_{m_{1}m_{2}} .The aim of this paper is to characterize the linear maps preserving inverses of tensor products of Hermite matrices.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Maps Preserving Inverses of Tensor Products of Hermite Matrices\",\"authors\":\"Shuang Yan, Yang Zhang\",\"doi\":\"10.5539/jmr.v15n4p75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let C be a complex field, H_{m_1m_2} be a linear space of tensor products of Hermite matrices H_{m_1}⊗H_{m_2} over C , and suppose m_{1}, m_2≥2 are positive integers. A linear map f :H_{m_1m_2} → H_n is called a linear inverse preserver if f( X_{1} ⊗X_{2} )^{-1}= f( X_{1}⊗X_{2}) ^{-1} ) for arbitrary invertible matrix X_{1} ⊗ X_{2}∈ H_{m_{1}m_{2}} .The aim of this paper is to characterize the linear maps preserving inverses of tensor products of Hermite matrices.\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n4p75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n4p75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设C为复域,H_{m_1}⊗H_{m_2} / C的埃尔米特矩阵张量积的线性空间,设m_{1}, m_2≥2为正整数。如果对于任意可逆矩阵X_{1}⊗X_{2}) ^{-1}= f(X_{1}⊗X_{2}) ^{-1}),则线性映射f:H_{m_1m_2}→H_n称为线性逆保持器。本文的目的是刻画保持Hermite矩阵张量积逆的线性映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Maps Preserving Inverses of Tensor Products of Hermite Matrices
Let C be a complex field, H_{m_1m_2} be a linear space of tensor products of Hermite matrices H_{m_1}⊗H_{m_2} over C , and suppose m_{1}, m_2≥2 are positive integers. A linear map f :H_{m_1m_2} → H_n is called a linear inverse preserver if f( X_{1} ⊗X_{2} )^{-1}= f( X_{1}⊗X_{2}) ^{-1} ) for arbitrary invertible matrix X_{1} ⊗ X_{2}∈ H_{m_{1}m_{2}} .The aim of this paper is to characterize the linear maps preserving inverses of tensor products of Hermite matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信