{"title":"梳状积图度分裂的星形着色","authors":"Ulagammal Subramanian, V. Joseph","doi":"10.22190/FUMI2002507S","DOIUrl":null,"url":null,"abstract":"A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number χs (G) of G is the least number of colors needed to star color G. Let G = (V,E) be a graph with V = S1 [ S2 [ S3 [ . . . [ St [ T where each Si is a set of all vertices of the same degree with at least two elements and T =V (G) − St i=1 Si. The degree splitting graph DS (G) is obtained by adding vertices w1,w2, . . .wt and joining wi to each vertex of Si for 1 i t. The comb product between two graphs G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the ith copy of H at the vertex o to the ith vertex of G. In this paper, we give the exact value of star chromatic number of degree splitting of comb product of complete graph with complete graph, complete graph with path, complete graph with cycle, complete graph with star graph, cycle with complete graph, path with complete graph and cycle with path graph.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"19 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON STAR COLORING OF DEGREE SPLITTING OF COMB PRODUCT GRAPHS\",\"authors\":\"Ulagammal Subramanian, V. Joseph\",\"doi\":\"10.22190/FUMI2002507S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number χs (G) of G is the least number of colors needed to star color G. Let G = (V,E) be a graph with V = S1 [ S2 [ S3 [ . . . [ St [ T where each Si is a set of all vertices of the same degree with at least two elements and T =V (G) − St i=1 Si. The degree splitting graph DS (G) is obtained by adding vertices w1,w2, . . .wt and joining wi to each vertex of Si for 1 i t. The comb product between two graphs G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the ith copy of H at the vertex o to the ith vertex of G. In this paper, we give the exact value of star chromatic number of degree splitting of comb product of complete graph with complete graph, complete graph with path, complete graph with cycle, complete graph with star graph, cycle with complete graph, path with complete graph and cycle with path graph.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUMI2002507S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI2002507S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
ON STAR COLORING OF DEGREE SPLITTING OF COMB PRODUCT GRAPHS
A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number χs (G) of G is the least number of colors needed to star color G. Let G = (V,E) be a graph with V = S1 [ S2 [ S3 [ . . . [ St [ T where each Si is a set of all vertices of the same degree with at least two elements and T =V (G) − St i=1 Si. The degree splitting graph DS (G) is obtained by adding vertices w1,w2, . . .wt and joining wi to each vertex of Si for 1 i t. The comb product between two graphs G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the ith copy of H at the vertex o to the ith vertex of G. In this paper, we give the exact value of star chromatic number of degree splitting of comb product of complete graph with complete graph, complete graph with path, complete graph with cycle, complete graph with star graph, cycle with complete graph, path with complete graph and cycle with path graph.