梳状积图度分裂的星形着色

IF 0.5 Q3 MATHEMATICS
Ulagammal Subramanian, V. Joseph
{"title":"梳状积图度分裂的星形着色","authors":"Ulagammal Subramanian, V. Joseph","doi":"10.22190/FUMI2002507S","DOIUrl":null,"url":null,"abstract":"A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number χs (G) of G is the least number of colors needed to star color G. Let G = (V,E) be a graph with V = S1 [ S2 [ S3 [ . . . [ St [ T where each Si is a set of all vertices of the same degree with at least two elements and T =V (G) − St i=1 Si. The degree splitting graph DS (G) is obtained by adding vertices w1,w2, . . .wt and joining wi to each vertex of Si for 1 i t. The comb product between two graphs G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the ith copy of H at the vertex o to the ith vertex of G. In this paper, we give the exact value of star chromatic number of degree splitting of comb product of complete graph with complete graph, complete graph with path, complete graph with cycle, complete graph with star graph, cycle with complete graph, path with complete graph and cycle with path graph.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"19 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON STAR COLORING OF DEGREE SPLITTING OF COMB PRODUCT GRAPHS\",\"authors\":\"Ulagammal Subramanian, V. Joseph\",\"doi\":\"10.22190/FUMI2002507S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number χs (G) of G is the least number of colors needed to star color G. Let G = (V,E) be a graph with V = S1 [ S2 [ S3 [ . . . [ St [ T where each Si is a set of all vertices of the same degree with at least two elements and T =V (G) − St i=1 Si. The degree splitting graph DS (G) is obtained by adding vertices w1,w2, . . .wt and joining wi to each vertex of Si for 1 i t. The comb product between two graphs G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the ith copy of H at the vertex o to the ith vertex of G. In this paper, we give the exact value of star chromatic number of degree splitting of comb product of complete graph with complete graph, complete graph with path, complete graph with cycle, complete graph with star graph, cycle with complete graph, path with complete graph and cycle with path graph.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUMI2002507S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI2002507S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G的星形着色是一种适当的顶点着色,其中G中四个顶点上的每条路径都不是双色的。G的星形色数χs (G)是星形色G所需的最少颜色数。设G = (V,E)为一个图,其中V = S1 [S2] S3[…]。[St] T,其中每个Si是至少有两个元素的相同度的所有顶点的集合,T =V (G)−St i= 1si。分裂程度图DS (G)是通过添加顶点w1、w2, .wt和加入wi Si的每个顶点1我t。梳两个图G和H之间的产品,用G⊲H,得到的是一个图G的一个副本和V (G) | | H和嫁接的第i个副本的副本在第i个顶点的顶点o H G在这篇文章中,我们给星色数的精确值的分裂程度梳理产品完全图的完全图,完全图的路径,完全图带循环,完全图带星图,循环带完全图,路径带完全图,循环带路径图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON STAR COLORING OF DEGREE SPLITTING OF COMB PRODUCT GRAPHS
A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number χs (G) of G is the least number of colors needed to star color G. Let G = (V,E) be a graph with V = S1 [ S2 [ S3 [ . . . [ St [ T where each Si is a set of all vertices of the same degree with at least two elements and T =V (G) − St i=1 Si. The degree splitting graph DS (G) is obtained by adding vertices w1,w2, . . .wt and joining wi to each vertex of Si for 1 i t. The comb product between two graphs G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the ith copy of H at the vertex o to the ith vertex of G. In this paper, we give the exact value of star chromatic number of degree splitting of comb product of complete graph with complete graph, complete graph with path, complete graph with cycle, complete graph with star graph, cycle with complete graph, path with complete graph and cycle with path graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信