智慧城市中无线传感器网络应对挑战的弹性评估

S. Aljohani, Mohammed J. F. Alenazi
{"title":"智慧城市中无线传感器网络应对挑战的弹性评估","authors":"S. Aljohani, Mohammed J. F. Alenazi","doi":"10.17706/ijcce.2020.9.4.193-206","DOIUrl":null,"url":null,"abstract":"Smart cities are considered to be one of the most important applications of the IoT notion. Most smart city applications rely fundamentally on ubiquitous sensing, enabled by Wireless Sensor Network (WSN) technologies. These sensor networks are vulnerable to different challenges that cause failures in some parts of the network, which in turn interfere with the availability of network services and weaken the user experience. In this paper, we introduce a graph-theoretic model of wireless sensor networks used in smart cities. Moreover, we present several challenges, such as natural disasters and random failures and evaluate the system's performance in terms of data delivery, end to end delay, and energy consumption. The evaluation results show that fire is the challenge that causes the most damage among the three challenges examined, while random failure has the least effect on network performance. The results also show that the modeled WSN's can cope well with the challenge of random failures.","PeriodicalId":23787,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering","volume":"214 1","pages":"193-206"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of WSN's Resilience to Challenges in Smart Cities\",\"authors\":\"S. Aljohani, Mohammed J. F. Alenazi\",\"doi\":\"10.17706/ijcce.2020.9.4.193-206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart cities are considered to be one of the most important applications of the IoT notion. Most smart city applications rely fundamentally on ubiquitous sensing, enabled by Wireless Sensor Network (WSN) technologies. These sensor networks are vulnerable to different challenges that cause failures in some parts of the network, which in turn interfere with the availability of network services and weaken the user experience. In this paper, we introduce a graph-theoretic model of wireless sensor networks used in smart cities. Moreover, we present several challenges, such as natural disasters and random failures and evaluate the system's performance in terms of data delivery, end to end delay, and energy consumption. The evaluation results show that fire is the challenge that causes the most damage among the three challenges examined, while random failure has the least effect on network performance. The results also show that the modeled WSN's can cope well with the challenge of random failures.\",\"PeriodicalId\":23787,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering\",\"volume\":\"214 1\",\"pages\":\"193-206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17706/ijcce.2020.9.4.193-206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/ijcce.2020.9.4.193-206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

智慧城市被认为是物联网概念最重要的应用之一。大多数智慧城市应用从根本上依赖于无处不在的传感,由无线传感器网络(WSN)技术实现。这些传感器网络容易受到不同挑战的影响,这些挑战会导致网络某些部分出现故障,从而干扰网络服务的可用性并削弱用户体验。本文介绍了智能城市无线传感器网络的图论模型。此外,我们提出了一些挑战,如自然灾害和随机故障,并从数据传输、端到端延迟和能源消耗方面评估了系统的性能。评价结果表明,火灾对网络性能的影响最大,而随机故障对网络性能的影响最小。实验结果还表明,所建立的无线传感器网络能够很好地应对随机故障的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of WSN's Resilience to Challenges in Smart Cities
Smart cities are considered to be one of the most important applications of the IoT notion. Most smart city applications rely fundamentally on ubiquitous sensing, enabled by Wireless Sensor Network (WSN) technologies. These sensor networks are vulnerable to different challenges that cause failures in some parts of the network, which in turn interfere with the availability of network services and weaken the user experience. In this paper, we introduce a graph-theoretic model of wireless sensor networks used in smart cities. Moreover, we present several challenges, such as natural disasters and random failures and evaluate the system's performance in terms of data delivery, end to end delay, and energy consumption. The evaluation results show that fire is the challenge that causes the most damage among the three challenges examined, while random failure has the least effect on network performance. The results also show that the modeled WSN's can cope well with the challenge of random failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信