Croke-Kleiner可容许群:性质(QT)和拟共凸性

Pub Date : 2020-09-07 DOI:10.1307/mmj/20216045
H. Nguyen, Wen-yuan Yang
{"title":"Croke-Kleiner可容许群:性质(QT)和拟共凸性","authors":"H. Nguyen, Wen-yuan Yang","doi":"10.1307/mmj/20216045","DOIUrl":null,"url":null,"abstract":"Croke-Kleiner admissible groups firstly introduced by Croke-Kleiner belong to a particular class of graph of groups which generalize fundamental groups of $3$--dimensional graph manifolds. In this paper, we show that if $G$ is a Croke-Kleiner admissible group, acting geometrically on a CAT(0) space $X$, then a finitely generated subgroup of $G$ has finite height if and only if it is strongly quasi-convex. We also show that if $G \\curvearrowright X$ is a flip CKA action then $G$ is quasi-isometric embedded into a finite product of quasi-trees. With further assumption on the vertex groups of the flip CKA action $G \\curvearrowright X$, we show that $G$ satisfies property (QT) that is introduced by Bestvina-Bromberg-Fujiwara.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Croke–Kleiner Admissible Groups: Property (QT) and Quasiconvexity\",\"authors\":\"H. Nguyen, Wen-yuan Yang\",\"doi\":\"10.1307/mmj/20216045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Croke-Kleiner admissible groups firstly introduced by Croke-Kleiner belong to a particular class of graph of groups which generalize fundamental groups of $3$--dimensional graph manifolds. In this paper, we show that if $G$ is a Croke-Kleiner admissible group, acting geometrically on a CAT(0) space $X$, then a finitely generated subgroup of $G$ has finite height if and only if it is strongly quasi-convex. We also show that if $G \\\\curvearrowright X$ is a flip CKA action then $G$ is quasi-isometric embedded into a finite product of quasi-trees. With further assumption on the vertex groups of the flip CKA action $G \\\\curvearrowright X$, we show that $G$ satisfies property (QT) that is introduced by Bestvina-Bromberg-Fujiwara.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

首先由Croke-Kleiner引入的Croke-Kleiner可容许群是一类特殊的群图,它推广了$3$维图流形的基本群。本文证明了如果$G$是几何作用于CAT(0)空间$X$上的Croke-Kleiner可容许群,则$G$的有限生成子群具有有限高度当且仅当它是强拟凸的。我们还证明了如果$G \curvearrowright X$是翻转CKA作用,则$G$是嵌入到拟树有限积中的拟等距。通过对翻转CKA动作$G \曲线右X$顶点群的进一步假设,证明$G$满足Bestvina-Bromberg-Fujiwara引入的性质(QT)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Croke–Kleiner Admissible Groups: Property (QT) and Quasiconvexity
Croke-Kleiner admissible groups firstly introduced by Croke-Kleiner belong to a particular class of graph of groups which generalize fundamental groups of $3$--dimensional graph manifolds. In this paper, we show that if $G$ is a Croke-Kleiner admissible group, acting geometrically on a CAT(0) space $X$, then a finitely generated subgroup of $G$ has finite height if and only if it is strongly quasi-convex. We also show that if $G \curvearrowright X$ is a flip CKA action then $G$ is quasi-isometric embedded into a finite product of quasi-trees. With further assumption on the vertex groups of the flip CKA action $G \curvearrowright X$, we show that $G$ satisfies property (QT) that is introduced by Bestvina-Bromberg-Fujiwara.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信