研究社区的中心-边缘结构

IF 4.1 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
E. Wedell, Minhyuk Park, Dmitriy Korobskiy, T. Warnow, George Chacko
{"title":"研究社区的中心-边缘结构","authors":"E. Wedell, Minhyuk Park, Dmitriy Korobskiy, T. Warnow, George Chacko","doi":"10.1162/qss_a_00184","DOIUrl":null,"url":null,"abstract":"Abstract Clustering and community detection in networks are of broad interest and have been the subject of extensive research that spans several fields. We are interested in the relatively narrow question of detecting communities of scientific publications that are linked by citations. These publication communities can be used to identify scientists with shared interests who form communities of researchers. Building on the well-known k-core algorithm, we have developed a modular pipeline to find publication communities with center–periphery structure. Using a quantitative and qualitative approach, we evaluate community finding results on a citation network consisting of over 14 million publications relevant to the field of extracellular vesicles. We compare our approach to communities discovered by the widely used Leiden algorithm for community finding.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"214 1","pages":"289-314"},"PeriodicalIF":4.1000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Center–periphery structure in research communities\",\"authors\":\"E. Wedell, Minhyuk Park, Dmitriy Korobskiy, T. Warnow, George Chacko\",\"doi\":\"10.1162/qss_a_00184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Clustering and community detection in networks are of broad interest and have been the subject of extensive research that spans several fields. We are interested in the relatively narrow question of detecting communities of scientific publications that are linked by citations. These publication communities can be used to identify scientists with shared interests who form communities of researchers. Building on the well-known k-core algorithm, we have developed a modular pipeline to find publication communities with center–periphery structure. Using a quantitative and qualitative approach, we evaluate community finding results on a citation network consisting of over 14 million publications relevant to the field of extracellular vesicles. We compare our approach to communities discovered by the widely used Leiden algorithm for community finding.\",\"PeriodicalId\":34021,\"journal\":{\"name\":\"Quantitative Science Studies\",\"volume\":\"214 1\",\"pages\":\"289-314\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Science Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/qss_a_00184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Science Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/qss_a_00184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

网络中的聚类和社区检测引起了广泛的关注,已经成为多个领域广泛研究的主题。我们感兴趣的是一个相对狭窄的问题,即发现通过引用联系在一起的科学出版物群体。这些出版社区可以用来识别有共同兴趣的科学家,他们组成了研究人员社区。在著名的k-core算法的基础上,我们开发了一个模块化的管道来寻找具有中心-外围结构的出版社区。使用定量和定性的方法,我们评估了由超过1400万篇与细胞外囊泡领域相关的出版物组成的引文网络的社区发现结果。我们将我们的方法与广泛使用的Leiden算法发现的社区进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Center–periphery structure in research communities
Abstract Clustering and community detection in networks are of broad interest and have been the subject of extensive research that spans several fields. We are interested in the relatively narrow question of detecting communities of scientific publications that are linked by citations. These publication communities can be used to identify scientists with shared interests who form communities of researchers. Building on the well-known k-core algorithm, we have developed a modular pipeline to find publication communities with center–periphery structure. Using a quantitative and qualitative approach, we evaluate community finding results on a citation network consisting of over 14 million publications relevant to the field of extracellular vesicles. We compare our approach to communities discovered by the widely used Leiden algorithm for community finding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantitative Science Studies
Quantitative Science Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
12.10
自引率
12.50%
发文量
46
审稿时长
22 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信