32阶G 38,…,G 41群的Morava K理论环

M. Bakuradze, M. Jibladze
{"title":"32阶G 38,…,G 41群的Morava K理论环","authors":"M. Bakuradze, M. Jibladze","doi":"10.1017/is013011009jkt245","DOIUrl":null,"url":null,"abstract":"B. Schuster (17) proved that the mod 2 Morava K-theory is good in the sense of Hopkins-Kuhn-Ravenel (12) for all 2-groups G of order 32. As for the missing four groups G with the numbers 38, 39, 40 and 41 in the Hall- Senior list (11), Morava K-theory has been shown to be evenly generated and, for s = 2, to be generated by transferred Chern classes. In this paper we compute the ring structure of K(s) � (BG) for these four groups.","PeriodicalId":50167,"journal":{"name":"Journal of K-Theory","volume":"10 1","pages":"171-198"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Morava K -theory rings for the groups G 38 , …, G 41 of order 32\",\"authors\":\"M. Bakuradze, M. Jibladze\",\"doi\":\"10.1017/is013011009jkt245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"B. Schuster (17) proved that the mod 2 Morava K-theory is good in the sense of Hopkins-Kuhn-Ravenel (12) for all 2-groups G of order 32. As for the missing four groups G with the numbers 38, 39, 40 and 41 in the Hall- Senior list (11), Morava K-theory has been shown to be evenly generated and, for s = 2, to be generated by transferred Chern classes. In this paper we compute the ring structure of K(s) � (BG) for these four groups.\",\"PeriodicalId\":50167,\"journal\":{\"name\":\"Journal of K-Theory\",\"volume\":\"10 1\",\"pages\":\"171-198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/is013011009jkt245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/is013011009jkt245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

B. Schuster(17)证明了mod2 Morava k理论在Hopkins-Kuhn-Ravenel(12)意义上对所有32阶的2群G都是好的。对于Hall- Senior list(11)中缺失的编号为38、39、40和41的4组G, Morava K-theory已被证明是均匀生成的,对于s = 2,是由迁移的chen类生成的。本文计算了这四种基团的K(s) _ (BG)的环结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morava K -theory rings for the groups G 38 , …, G 41 of order 32
B. Schuster (17) proved that the mod 2 Morava K-theory is good in the sense of Hopkins-Kuhn-Ravenel (12) for all 2-groups G of order 32. As for the missing four groups G with the numbers 38, 39, 40 and 41 in the Hall- Senior list (11), Morava K-theory has been shown to be evenly generated and, for s = 2, to be generated by transferred Chern classes. In this paper we compute the ring structure of K(s) � (BG) for these four groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of K-Theory
Journal of K-Theory 数学-数学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信