多点刀具状态监测系统的比较研究

IF 1.2 Q3 ENGINEERING, MECHANICAL
K. Pradeep, V. Muralidharan, Hameed Shaul
{"title":"多点刀具状态监测系统的比较研究","authors":"K. Pradeep, V. Muralidharan, Hameed Shaul","doi":"10.5937/fme2201193k","DOIUrl":null,"url":null,"abstract":"In the metal removal process, the condition of the tool plays a vital role to achieve maximum productivity. Hence, monitoring the tool condition becomes inevitable. The multipoint cutting tool used in the face milling process is taken up for the study. Cutting inserts made up of carbide with different conditions such as fault-free tool (G), flank wear (FW), wear on rake face (C) and tool with broken tip (B) are considered. During machining of mild steel, vibration signals are acquired for different conditions of the tool using a tri-axial accelerometer, and statistical features are extracted. Then, the significant features are selected using the decision tree algorithm. Support Vector Machine(SVM) algorithm is applied to classify the conditions of the tool. The results are compared with the performance of the K-Star algorithm. The classification accuracy obtained is encouraging hence, the study is recommended for real-time application.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":"76 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-point tool condition monitoring system: A comparative study\",\"authors\":\"K. Pradeep, V. Muralidharan, Hameed Shaul\",\"doi\":\"10.5937/fme2201193k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the metal removal process, the condition of the tool plays a vital role to achieve maximum productivity. Hence, monitoring the tool condition becomes inevitable. The multipoint cutting tool used in the face milling process is taken up for the study. Cutting inserts made up of carbide with different conditions such as fault-free tool (G), flank wear (FW), wear on rake face (C) and tool with broken tip (B) are considered. During machining of mild steel, vibration signals are acquired for different conditions of the tool using a tri-axial accelerometer, and statistical features are extracted. Then, the significant features are selected using the decision tree algorithm. Support Vector Machine(SVM) algorithm is applied to classify the conditions of the tool. The results are compared with the performance of the K-Star algorithm. The classification accuracy obtained is encouraging hence, the study is recommended for real-time application.\",\"PeriodicalId\":12218,\"journal\":{\"name\":\"FME Transactions\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FME Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/fme2201193k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2201193k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

在金属去除过程中,刀具的状态对实现最大生产率起着至关重要的作用。因此,对刀具状态的监测成为必然。以面铣削加工中使用的多点刀具为研究对象。考虑了刀具无故障(G)、刀面磨损(FW)、前刀面磨损(C)和刀尖破损(B)等不同情况下由硬质合金组成的切削刀片。在低碳钢加工过程中,利用三轴加速度计采集刀具不同工况下的振动信号,并提取统计特征。然后,使用决策树算法选择显著特征。采用支持向量机(SVM)算法对刀具状态进行分类。结果与K-Star算法的性能进行了比较。结果表明,该方法具有较好的分类精度,可用于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-point tool condition monitoring system: A comparative study
In the metal removal process, the condition of the tool plays a vital role to achieve maximum productivity. Hence, monitoring the tool condition becomes inevitable. The multipoint cutting tool used in the face milling process is taken up for the study. Cutting inserts made up of carbide with different conditions such as fault-free tool (G), flank wear (FW), wear on rake face (C) and tool with broken tip (B) are considered. During machining of mild steel, vibration signals are acquired for different conditions of the tool using a tri-axial accelerometer, and statistical features are extracted. Then, the significant features are selected using the decision tree algorithm. Support Vector Machine(SVM) algorithm is applied to classify the conditions of the tool. The results are compared with the performance of the K-Star algorithm. The classification accuracy obtained is encouraging hence, the study is recommended for real-time application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FME Transactions
FME Transactions ENGINEERING, MECHANICAL-
CiteScore
3.60
自引率
31.20%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信