Zihao Wang , Roger Lloret-Batlle , Jianfeng Zheng , Henry X. Liu
{"title":"低穿透率轨迹数据下交通控制的自适应绿裂优化","authors":"Zihao Wang , Roger Lloret-Batlle , Jianfeng Zheng , Henry X. Liu","doi":"10.1080/15472450.2023.2227959","DOIUrl":null,"url":null,"abstract":"<div><div>Adaptive traffic signal control systems often rely on expensive physical detection infrastructure. However, with the advent of widespread trajectory data, it is now possible to implement adaptive control entirely avoiding such costs. We present two simple adaptive control policies which only require sample delay and number of stops, with the goal to mitigate the presence of oversaturation. The simplicity stems from the necessity of controlling under any trajectory penetration rate. The two policies differ on the possibilities of the control infrastructure to be implemented. The first one minimizes oversaturation by deviating from a reference pre-timed signal plan. This signal plan can be an existing one or an estimated one from aggregating trajectory data. The second policy creates first a set of green split plans to be then selected by a control logic. This second policy is intended to be used in SCATS-like systems where signal plans are limited to a pre-defined discrete set. We propose a plan selection logics or alternatively, the original plan selection policy can be used as well. Both policies are tested in the field, achieving a significant reduction in delay, oversaturation and spillover ratios. Lastly, we test an application of this policy as an enhancement of SCATS systems in the presence of malfunctioning physical detectors.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 830-845"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive green split optimization for traffic control with low penetration rate trajectory data\",\"authors\":\"Zihao Wang , Roger Lloret-Batlle , Jianfeng Zheng , Henry X. Liu\",\"doi\":\"10.1080/15472450.2023.2227959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Adaptive traffic signal control systems often rely on expensive physical detection infrastructure. However, with the advent of widespread trajectory data, it is now possible to implement adaptive control entirely avoiding such costs. We present two simple adaptive control policies which only require sample delay and number of stops, with the goal to mitigate the presence of oversaturation. The simplicity stems from the necessity of controlling under any trajectory penetration rate. The two policies differ on the possibilities of the control infrastructure to be implemented. The first one minimizes oversaturation by deviating from a reference pre-timed signal plan. This signal plan can be an existing one or an estimated one from aggregating trajectory data. The second policy creates first a set of green split plans to be then selected by a control logic. This second policy is intended to be used in SCATS-like systems where signal plans are limited to a pre-defined discrete set. We propose a plan selection logics or alternatively, the original plan selection policy can be used as well. Both policies are tested in the field, achieving a significant reduction in delay, oversaturation and spillover ratios. Lastly, we test an application of this policy as an enhancement of SCATS systems in the presence of malfunctioning physical detectors.</div></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"28 6\",\"pages\":\"Pages 830-845\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245023000877\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000877","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Adaptive green split optimization for traffic control with low penetration rate trajectory data
Adaptive traffic signal control systems often rely on expensive physical detection infrastructure. However, with the advent of widespread trajectory data, it is now possible to implement adaptive control entirely avoiding such costs. We present two simple adaptive control policies which only require sample delay and number of stops, with the goal to mitigate the presence of oversaturation. The simplicity stems from the necessity of controlling under any trajectory penetration rate. The two policies differ on the possibilities of the control infrastructure to be implemented. The first one minimizes oversaturation by deviating from a reference pre-timed signal plan. This signal plan can be an existing one or an estimated one from aggregating trajectory data. The second policy creates first a set of green split plans to be then selected by a control logic. This second policy is intended to be used in SCATS-like systems where signal plans are limited to a pre-defined discrete set. We propose a plan selection logics or alternatively, the original plan selection policy can be used as well. Both policies are tested in the field, achieving a significant reduction in delay, oversaturation and spillover ratios. Lastly, we test an application of this policy as an enhancement of SCATS systems in the presence of malfunctioning physical detectors.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.