车削过程中刀具弹性空间取向与切削力再生的相互关系

IF 0.5 Q4 PHYSICS, MULTIDISCIPLINARY
V. Zakovorotny, Valeriya Gvindjiliya
{"title":"车削过程中刀具弹性空间取向与切削力再生的相互关系","authors":"V. Zakovorotny, Valeriya Gvindjiliya","doi":"10.18500/0869-6632-2022-30-1-37-56","DOIUrl":null,"url":null,"abstract":"Nowadays, the dynamic cutting system is represented in the form of two subsystems — tool and workpiece, interacting through a nonlinear relationship formed by the cutting process. Such a representation determines the importance of studying the dynamics of the cutting process as the main factor influencing the efficiency of machines, the trajectories of the executive elements of which are set by CNC and are provided with high accuracy. However, in order to improve the efficiency of cutting, it is necessary to align the trajectories of the executive elements are defined by CNC with the changing dynamics of cutting, which introduces deviations in the program-defined trajectories. Purpose of this article is to consider the dependence of the dynamics of the cutting process on the spatial orientation of the cutting tool elasticity and the regenerative effect, and to find out the effect of the proposed dependence on the efficiency of the cutting process. All the issues discussed in the article are analyzed using the example of external shaft turning. Methods. The study is based on the methods of mathematical modeling and experimental dynamics. In contrast to the known studies, the dependence of the turnover lag time on the oscillatory displacements in the direction of the cutting speed, as well as the influence of the positive feedback formed in this case, is taken into account. In addition, changes in the sign of the internal feedback from the direction of deformations, as well as the influence of the regenerative effect on the generated attracting sets of deformations are taken into account. Results. Dependence of the system evolution on the elements of the stiffness matrix at different spindle speeds is disclosed. The properties of the system evolution depending on the ratio of the spindle rotation frequency and the eigenfrequencies of the tool subsystem, as well as the spatial distribution of the stiffness are studied. Conclusion. The frequency and time characteristics of the system are discussed. Conclusion is made about the possibility of efficiency increasing of the cutting process based on the coordination of the CNC program with the dynamic properties of the system.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Correlation of attracting sets of tool deformations with spatial orientation of tool elasticity and regeneration of cutting forces in turning\",\"authors\":\"V. Zakovorotny, Valeriya Gvindjiliya\",\"doi\":\"10.18500/0869-6632-2022-30-1-37-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the dynamic cutting system is represented in the form of two subsystems — tool and workpiece, interacting through a nonlinear relationship formed by the cutting process. Such a representation determines the importance of studying the dynamics of the cutting process as the main factor influencing the efficiency of machines, the trajectories of the executive elements of which are set by CNC and are provided with high accuracy. However, in order to improve the efficiency of cutting, it is necessary to align the trajectories of the executive elements are defined by CNC with the changing dynamics of cutting, which introduces deviations in the program-defined trajectories. Purpose of this article is to consider the dependence of the dynamics of the cutting process on the spatial orientation of the cutting tool elasticity and the regenerative effect, and to find out the effect of the proposed dependence on the efficiency of the cutting process. All the issues discussed in the article are analyzed using the example of external shaft turning. Methods. The study is based on the methods of mathematical modeling and experimental dynamics. In contrast to the known studies, the dependence of the turnover lag time on the oscillatory displacements in the direction of the cutting speed, as well as the influence of the positive feedback formed in this case, is taken into account. In addition, changes in the sign of the internal feedback from the direction of deformations, as well as the influence of the regenerative effect on the generated attracting sets of deformations are taken into account. Results. Dependence of the system evolution on the elements of the stiffness matrix at different spindle speeds is disclosed. The properties of the system evolution depending on the ratio of the spindle rotation frequency and the eigenfrequencies of the tool subsystem, as well as the spatial distribution of the stiffness are studied. Conclusion. The frequency and time characteristics of the system are discussed. Conclusion is made about the possibility of efficiency increasing of the cutting process based on the coordination of the CNC program with the dynamic properties of the system.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-2022-30-1-37-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-1-37-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

目前,动态切削系统表现为刀具和工件两个子系统,它们通过切削过程形成的非线性关系相互作用。这种表述决定了研究切削过程动力学的重要性,它是影响机床效率的主要因素,其执行元件的轨迹由CNC设定并提供高精度。然而,为了提高切削效率,有必要使CNC定义的执行元件的轨迹与切削动态的变化相一致,这将引入程序定义轨迹的偏差。本文的目的是考虑切削过程的动力学对刀具弹性空间取向和再生效应的依赖性,并找出所提出的依赖性对切削过程效率的影响。并以外轴车削为例对文中所讨论的问题进行了分析。方法。本研究采用数学建模和实验动力学相结合的方法。与已知的研究相反,考虑了周转滞后时间对切削速度方向振荡位移的依赖,以及在这种情况下形成的正反馈的影响。此外,还考虑了变形方向的内部反馈符号的变化,以及再生效应对生成的形变吸引集的影响。结果。揭示了系统演化对不同主轴转速下刚度矩阵元素的依赖性。研究了主轴旋转频率与刀具子系统特征频率之比对系统演化特性的影响,以及刚度的空间分布。结论。讨论了系统的频率特性和时间特性。在数控程序与系统动态特性相协调的基础上,得出了提高切削加工效率的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation of attracting sets of tool deformations with spatial orientation of tool elasticity and regeneration of cutting forces in turning
Nowadays, the dynamic cutting system is represented in the form of two subsystems — tool and workpiece, interacting through a nonlinear relationship formed by the cutting process. Such a representation determines the importance of studying the dynamics of the cutting process as the main factor influencing the efficiency of machines, the trajectories of the executive elements of which are set by CNC and are provided with high accuracy. However, in order to improve the efficiency of cutting, it is necessary to align the trajectories of the executive elements are defined by CNC with the changing dynamics of cutting, which introduces deviations in the program-defined trajectories. Purpose of this article is to consider the dependence of the dynamics of the cutting process on the spatial orientation of the cutting tool elasticity and the regenerative effect, and to find out the effect of the proposed dependence on the efficiency of the cutting process. All the issues discussed in the article are analyzed using the example of external shaft turning. Methods. The study is based on the methods of mathematical modeling and experimental dynamics. In contrast to the known studies, the dependence of the turnover lag time on the oscillatory displacements in the direction of the cutting speed, as well as the influence of the positive feedback formed in this case, is taken into account. In addition, changes in the sign of the internal feedback from the direction of deformations, as well as the influence of the regenerative effect on the generated attracting sets of deformations are taken into account. Results. Dependence of the system evolution on the elements of the stiffness matrix at different spindle speeds is disclosed. The properties of the system evolution depending on the ratio of the spindle rotation frequency and the eigenfrequencies of the tool subsystem, as well as the spatial distribution of the stiffness are studied. Conclusion. The frequency and time characteristics of the system are discussed. Conclusion is made about the possibility of efficiency increasing of the cutting process based on the coordination of the CNC program with the dynamic properties of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信