D. Pamučar, I. Petrovic, Goran Ćirović, Željko Stević
{"title":"使用语言中性数的mabac和OS模型的扩展:用于扑灭森林火灾的无人驾驶飞机的选择","authors":"D. Pamučar, I. Petrovic, Goran Ćirović, Željko Stević","doi":"10.3846/transport.2022.16645","DOIUrl":null,"url":null,"abstract":"The paper presents a new approach to the treatment of uncertainty and subjectivity in the decision-making process based on the modification of Multi-Attributive Border Approximation area Comparison (MABAC) and an Objective–Subjective (OS) model by applying Linguistic Neutrosophic Numbers (LNN) instead of traditional numerical values. By integrating these models with LNN it was shown that it is possible to a significant extent to eliminate subjective qualitative assessments and assumptions by decision makers in complex decision-making conditions. On this basis, a new hybrid LNN–OS–MABAC model was formed. This model was tested and validated on a case-study in which the optimal unmanned aircraft were selected to combat forest fires. After defining the criteria and their attributes, they were prioritized using the LNN–OS model, in which the weights of the criteria and their attributes are a combination of the objective values obtained by the method of maximum deviation and the subjective values of the criteria obtained by expert examination using LNN. The ranking and selection of the optimal unmanned aircraft from those on offer with similar characteristics was carried out using the LNN–MABAC model. Testing of the model showed that the proposed model based on LNN provides an objective expert evaluation by eliminating subjective assessments when determining the numerical values of criteria. A sensitivity analysis of the LNN–OS–MABAC model, carried out through 54 scenarios of changes in the weight coefficients, showed a high degree of stability in the solutions obtained when the alternatives were ranked. The results were validated by comparison with LNN extensions of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) model.","PeriodicalId":23260,"journal":{"name":"Transport","volume":"16 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"AN EXTENSION OF THE MABAC AND OS MODEL USING LINGUISTIC NEUTROSOPHIC NUMBERS: SELECTION OF UNMANNED AIRCRAFT FOR FIGHTING FOREST FIRES\",\"authors\":\"D. Pamučar, I. Petrovic, Goran Ćirović, Željko Stević\",\"doi\":\"10.3846/transport.2022.16645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a new approach to the treatment of uncertainty and subjectivity in the decision-making process based on the modification of Multi-Attributive Border Approximation area Comparison (MABAC) and an Objective–Subjective (OS) model by applying Linguistic Neutrosophic Numbers (LNN) instead of traditional numerical values. By integrating these models with LNN it was shown that it is possible to a significant extent to eliminate subjective qualitative assessments and assumptions by decision makers in complex decision-making conditions. On this basis, a new hybrid LNN–OS–MABAC model was formed. This model was tested and validated on a case-study in which the optimal unmanned aircraft were selected to combat forest fires. After defining the criteria and their attributes, they were prioritized using the LNN–OS model, in which the weights of the criteria and their attributes are a combination of the objective values obtained by the method of maximum deviation and the subjective values of the criteria obtained by expert examination using LNN. The ranking and selection of the optimal unmanned aircraft from those on offer with similar characteristics was carried out using the LNN–MABAC model. Testing of the model showed that the proposed model based on LNN provides an objective expert evaluation by eliminating subjective assessments when determining the numerical values of criteria. A sensitivity analysis of the LNN–OS–MABAC model, carried out through 54 scenarios of changes in the weight coefficients, showed a high degree of stability in the solutions obtained when the alternatives were ranked. The results were validated by comparison with LNN extensions of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) model.\",\"PeriodicalId\":23260,\"journal\":{\"name\":\"Transport\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3846/transport.2022.16645\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/transport.2022.16645","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
AN EXTENSION OF THE MABAC AND OS MODEL USING LINGUISTIC NEUTROSOPHIC NUMBERS: SELECTION OF UNMANNED AIRCRAFT FOR FIGHTING FOREST FIRES
The paper presents a new approach to the treatment of uncertainty and subjectivity in the decision-making process based on the modification of Multi-Attributive Border Approximation area Comparison (MABAC) and an Objective–Subjective (OS) model by applying Linguistic Neutrosophic Numbers (LNN) instead of traditional numerical values. By integrating these models with LNN it was shown that it is possible to a significant extent to eliminate subjective qualitative assessments and assumptions by decision makers in complex decision-making conditions. On this basis, a new hybrid LNN–OS–MABAC model was formed. This model was tested and validated on a case-study in which the optimal unmanned aircraft were selected to combat forest fires. After defining the criteria and their attributes, they were prioritized using the LNN–OS model, in which the weights of the criteria and their attributes are a combination of the objective values obtained by the method of maximum deviation and the subjective values of the criteria obtained by expert examination using LNN. The ranking and selection of the optimal unmanned aircraft from those on offer with similar characteristics was carried out using the LNN–MABAC model. Testing of the model showed that the proposed model based on LNN provides an objective expert evaluation by eliminating subjective assessments when determining the numerical values of criteria. A sensitivity analysis of the LNN–OS–MABAC model, carried out through 54 scenarios of changes in the weight coefficients, showed a high degree of stability in the solutions obtained when the alternatives were ranked. The results were validated by comparison with LNN extensions of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) model.
期刊介绍:
At present, transport is one of the key branches playing a crucial role in the development of economy. Reliable and properly organized transport services are required for a professional performance of industry, construction and agriculture. The public mood and efficiency of work also largely depend on the valuable functions of a carefully chosen transport system. A steady increase in transportation is accompanied by growing demands for a higher quality of transport services and optimum efficiency of transport performance. Currently, joint efforts taken by the transport experts and governing institutions of the country are required to develop and enhance the performance of the national transport system conducting theoretical and empirical research.
TRANSPORT is an international peer-reviewed journal covering main aspects of transport and providing a source of information for the engineer and the applied scientist.
The journal TRANSPORT publishes articles in the fields of:
transport policy;
fundamentals of the transport system;
technology for carrying passengers and freight using road, railway, inland waterways, sea and air transport;
technology for multimodal transportation and logistics;
loading technology;
roads, railways;
airports, ports, transport terminals;
traffic safety and environment protection;
design, manufacture and exploitation of motor vehicles;
pipeline transport;
transport energetics;
fuels, lubricants and maintenance materials;
teamwork of customs and transport;
transport information technologies;
transport economics and management;
transport standards;
transport educology and history, etc.