磁场对硅酸盐水泥破碎分散性及水泥石抗拉强度影响的研究

Q3 Engineering
R. Ibragimov, E. Korolev, E. Khorkov, L. Gimranov
{"title":"磁场对硅酸盐水泥破碎分散性及水泥石抗拉强度影响的研究","authors":"R. Ibragimov, E. Korolev, E. Khorkov, L. Gimranov","doi":"10.28991/cej-2023-09-05-015","DOIUrl":null,"url":null,"abstract":"This paper investigates the effect of a magnetic field on the grinding processes of Portland cement and the axial tensile strength of cement stone. It was found that the dispersion composition of Portland cement is affected by the magnetic field in two modes. Moreover, the grinding of Portland cement without a magnetic field has subtle modes within small particles (0.1–0.4 microns). The grinding of Portland cement with a magnetic field demonstrates an increase in the mode area of small particles and a decrease in the area of large particles (more than 1.6 microns), with an increase in processing time. In this work, the previously established magnetoplastic effect was confirmed in cement stone only in crystalline samples. The determined effect on cement stone is to reduce its strength by 53-59% and simultaneously increase relative deformation by 63–149%, depending on the specimen size and type. The magnetoplastic effect is also visually recorded on scans of the crack edges in cement stone examined using probe microscopy. The obtained experimental data confirm the validity of the proposed hypothesis of the effect of the magnetic field on polycrystalline materials with isotropic structure, in particular portland cement and cement stone, which consists in the fact that the magnetic field contributes to the accumulation of dislocations in the material, an acceleration of their movement, and the development of cracks. Doi: 10.28991/CEJ-2023-09-05-015 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"224 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Effect of Magnetic Field on Dispersion of Crushed Portland Cement and Tensile Strength of Cement Stone\",\"authors\":\"R. Ibragimov, E. Korolev, E. Khorkov, L. Gimranov\",\"doi\":\"10.28991/cej-2023-09-05-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the effect of a magnetic field on the grinding processes of Portland cement and the axial tensile strength of cement stone. It was found that the dispersion composition of Portland cement is affected by the magnetic field in two modes. Moreover, the grinding of Portland cement without a magnetic field has subtle modes within small particles (0.1–0.4 microns). The grinding of Portland cement with a magnetic field demonstrates an increase in the mode area of small particles and a decrease in the area of large particles (more than 1.6 microns), with an increase in processing time. In this work, the previously established magnetoplastic effect was confirmed in cement stone only in crystalline samples. The determined effect on cement stone is to reduce its strength by 53-59% and simultaneously increase relative deformation by 63–149%, depending on the specimen size and type. The magnetoplastic effect is also visually recorded on scans of the crack edges in cement stone examined using probe microscopy. The obtained experimental data confirm the validity of the proposed hypothesis of the effect of the magnetic field on polycrystalline materials with isotropic structure, in particular portland cement and cement stone, which consists in the fact that the magnetic field contributes to the accumulation of dislocations in the material, an acceleration of their movement, and the development of cracks. Doi: 10.28991/CEJ-2023-09-05-015 Full Text: PDF\",\"PeriodicalId\":53612,\"journal\":{\"name\":\"Open Civil Engineering Journal\",\"volume\":\"224 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/cej-2023-09-05-015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-05-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了磁场对硅酸盐水泥粉磨过程和水泥石轴向抗拉强度的影响。研究发现,在两种模式下,磁场对硅酸盐水泥的分散组成有影响。此外,无磁场的硅酸盐水泥的研磨在小颗粒(0.1-0.4微米)内具有微妙的模式。在磁场作用下对硅酸盐水泥进行研磨,随着处理时间的延长,小颗粒的模态面积增大,大颗粒(大于1.6 μ m)的模态面积减小。在这项工作中,先前建立的磁塑性效应仅在结晶样品中在水泥石中得到证实。根据试件尺寸和类型的不同,对水泥石的强度降低53-59%,同时相对变形增加63-149%。磁塑性效应也被记录在用探针显微镜检查的水泥石裂缝边缘的扫描上。得到的实验数据证实了磁场对具有各向同性结构的多晶材料,特别是硅酸盐水泥和水泥石的影响假设的有效性,即磁场有助于材料中位错的积累,它们的运动加速和裂缝的发展。Doi: 10.28991/CEJ-2023-09-05-015全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the Effect of Magnetic Field on Dispersion of Crushed Portland Cement and Tensile Strength of Cement Stone
This paper investigates the effect of a magnetic field on the grinding processes of Portland cement and the axial tensile strength of cement stone. It was found that the dispersion composition of Portland cement is affected by the magnetic field in two modes. Moreover, the grinding of Portland cement without a magnetic field has subtle modes within small particles (0.1–0.4 microns). The grinding of Portland cement with a magnetic field demonstrates an increase in the mode area of small particles and a decrease in the area of large particles (more than 1.6 microns), with an increase in processing time. In this work, the previously established magnetoplastic effect was confirmed in cement stone only in crystalline samples. The determined effect on cement stone is to reduce its strength by 53-59% and simultaneously increase relative deformation by 63–149%, depending on the specimen size and type. The magnetoplastic effect is also visually recorded on scans of the crack edges in cement stone examined using probe microscopy. The obtained experimental data confirm the validity of the proposed hypothesis of the effect of the magnetic field on polycrystalline materials with isotropic structure, in particular portland cement and cement stone, which consists in the fact that the magnetic field contributes to the accumulation of dislocations in the material, an acceleration of their movement, and the development of cracks. Doi: 10.28991/CEJ-2023-09-05-015 Full Text: PDF
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信