{"title":"关于z4 -线性类prepare和类kerdock代码","authors":"J. Borges, K. Phelps, J. Rifà, V. Zinoviev","doi":"10.1109/TIT.2003.819329","DOIUrl":null,"url":null,"abstract":"We say that a binary code of length n is additive if it is isomorphic to a subgroup of /spl Zopf//sub 2//sup /spl alpha// /spl times/ /spl Zopf//sub 4//sup /spl beta//, where the quaternary coordinates are transformed to binary by means of the usual Gray map and hence /spl alpha/ + 2/spl beta/ = n. In this paper, we prove that any additive extended Preparata (1968) -like code always verifies /spl alpha/ = 0, i.e., it is always a /spl Zopf//sub 4/-linear code. Moreover, we compute the rank and the dimension of the kernel of such Preparata-like codes and also the rank and the kernel of the /spl Zopf//sub 4/-dual of these codes, i.e., the /spl Zopf//sub 4/-linear Kerdock-like codes.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"3 1","pages":"2834-2843"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"On Z4-linear Preparata-like and Kerdock-like code\",\"authors\":\"J. Borges, K. Phelps, J. Rifà, V. Zinoviev\",\"doi\":\"10.1109/TIT.2003.819329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We say that a binary code of length n is additive if it is isomorphic to a subgroup of /spl Zopf//sub 2//sup /spl alpha// /spl times/ /spl Zopf//sub 4//sup /spl beta//, where the quaternary coordinates are transformed to binary by means of the usual Gray map and hence /spl alpha/ + 2/spl beta/ = n. In this paper, we prove that any additive extended Preparata (1968) -like code always verifies /spl alpha/ = 0, i.e., it is always a /spl Zopf//sub 4/-linear code. Moreover, we compute the rank and the dimension of the kernel of such Preparata-like codes and also the rank and the kernel of the /spl Zopf//sub 4/-dual of these codes, i.e., the /spl Zopf//sub 4/-linear Kerdock-like codes.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"3 1\",\"pages\":\"2834-2843\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.819329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.819329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We say that a binary code of length n is additive if it is isomorphic to a subgroup of /spl Zopf//sub 2//sup /spl alpha// /spl times/ /spl Zopf//sub 4//sup /spl beta//, where the quaternary coordinates are transformed to binary by means of the usual Gray map and hence /spl alpha/ + 2/spl beta/ = n. In this paper, we prove that any additive extended Preparata (1968) -like code always verifies /spl alpha/ = 0, i.e., it is always a /spl Zopf//sub 4/-linear code. Moreover, we compute the rank and the dimension of the kernel of such Preparata-like codes and also the rank and the kernel of the /spl Zopf//sub 4/-dual of these codes, i.e., the /spl Zopf//sub 4/-linear Kerdock-like codes.