凸函数具有精细渐近估计的全函数

IF 0.5 Q3 MATHEMATICS
K. P. Isaev, R. S. Yulmukhametov, A. A. Yunusov
{"title":"凸函数具有精细渐近估计的全函数","authors":"K. P. Isaev, R. S. Yulmukhametov, A. A. Yunusov","doi":"10.13108/2014-6-2-35","DOIUrl":null,"url":null,"abstract":"In the paper we propose an entire function such that the logarithm of its modulus asymptotically approximates the given subharmonic function (Re z ), where is the Legendre transformation of a convex function ℎ(t ) on (−1; 1). Such functions have applications in the issues on representation by exponential series of functions in integral weighted spaces on the interval (−1; 1) with the weight exp ℎ(t ). At that, better the ap- proximation, a finer topology can be used for the representation by exponential series. For functions ℎ obeying (1 − |t |) n = �� (exp(ℎ(t ))), n ∈ N, the corresponding entire func- tions were constructed before. In the present paper we consider the functions satisfying exp(ℎ(t )) = o ((1 − |t |) n ), n ∈ N. In the suggested construction we take into considera- tion the necessary conditions for the distribution of exponents for the exponentials in the unconditional bases obtained in previous works. This is why the main result of the paper (Theorem 1) should be treated not as a tool for constructing unconditional bases but as an argument supporting the absence of such bases.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"2012 1","pages":"35-43"},"PeriodicalIF":0.5000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ENTIRE FUNCTIONS WITH FINE ASYMPTOTIC ESTIMATES FOR CONVEX FUNCTIONS\",\"authors\":\"K. P. Isaev, R. S. Yulmukhametov, A. A. Yunusov\",\"doi\":\"10.13108/2014-6-2-35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we propose an entire function such that the logarithm of its modulus asymptotically approximates the given subharmonic function (Re z ), where is the Legendre transformation of a convex function ℎ(t ) on (−1; 1). Such functions have applications in the issues on representation by exponential series of functions in integral weighted spaces on the interval (−1; 1) with the weight exp ℎ(t ). At that, better the ap- proximation, a finer topology can be used for the representation by exponential series. For functions ℎ obeying (1 − |t |) n = �� (exp(ℎ(t ))), n ∈ N, the corresponding entire func- tions were constructed before. In the present paper we consider the functions satisfying exp(ℎ(t )) = o ((1 − |t |) n ), n ∈ N. In the suggested construction we take into considera- tion the necessary conditions for the distribution of exponents for the exponentials in the unconditional bases obtained in previous works. This is why the main result of the paper (Theorem 1) should be treated not as a tool for constructing unconditional bases but as an argument supporting the absence of such bases.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"2012 1\",\"pages\":\"35-43\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2014-6-2-35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2014-6-2-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个完整的函数,使得它的模的对数渐近地逼近给定的次调和函数(Re z),其中是凸函数 (t)在(−1)上的Legendre变换;这类函数在区间(−1;1)以exp (t)为权值。这样,近似性越好,指数级数表示的拓扑结构越精细。对于函数服从(1−|t |) n = (exp( (t)), n∈n,之前构造了相应的完整函数。本文考虑满足exp( (t)) = o((1−|t |) n), n∈n的函数。在建议的构造中,我们考虑了前人所得到的无条件基中指数分布的必要条件。这就是为什么论文的主要结果(定理1)不应被视为构建无条件基础的工具,而应被视为支持这种基础不存在的论据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ENTIRE FUNCTIONS WITH FINE ASYMPTOTIC ESTIMATES FOR CONVEX FUNCTIONS
In the paper we propose an entire function such that the logarithm of its modulus asymptotically approximates the given subharmonic function (Re z ), where is the Legendre transformation of a convex function ℎ(t ) on (−1; 1). Such functions have applications in the issues on representation by exponential series of functions in integral weighted spaces on the interval (−1; 1) with the weight exp ℎ(t ). At that, better the ap- proximation, a finer topology can be used for the representation by exponential series. For functions ℎ obeying (1 − |t |) n = �� (exp(ℎ(t ))), n ∈ N, the corresponding entire func- tions were constructed before. In the present paper we consider the functions satisfying exp(ℎ(t )) = o ((1 − |t |) n ), n ∈ N. In the suggested construction we take into considera- tion the necessary conditions for the distribution of exponents for the exponentials in the unconditional bases obtained in previous works. This is why the main result of the paper (Theorem 1) should be treated not as a tool for constructing unconditional bases but as an argument supporting the absence of such bases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信