{"title":"千万亿次超级计算机负载感知利用率优化:基于证据的统计方法评估","authors":"Fei Xing, Haihang You","doi":"10.1145/2616498.2616536","DOIUrl":null,"url":null,"abstract":"Nowadays, computing resources like supercomputers are shared by many users. Most systems are equipped with batch systems as their resource managers. From a user's perspective, the overall turnaround of each submitted job is measured by time-to-solution which consists of the sum of batch queuing time and execution time. On a busy machine, most jobs spend more time waiting in the batch queue than their real job executions. And rarely this is a topic of performance tuning and optimization of parallel computing. we propose a workload aware method systematically to predict jobs' batch queue waiting time patterns. Consequently, it will help user to optimize utilization and improve productivity. With workload data gathered from a supercomputer, we apply Bayesian framework to predict the temporal trend of long-time batch queue waiting probability. Thus, the workload of the machine not only can be predicted, we are able to provide users with a monthly updated reference chart to suggest job submission assembled with better chosen number of CPU and running time requests, which will avoid long-time waiting in batch queue. Our experiment shows that the model could make over 89% correct predictions for all cases we have tested.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"30 1","pages":"50:1-50:8"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Workload Aware Utilization Optimization for a Petaflop Supercomputer: Evidence Based Assessment Using Statistical Methods\",\"authors\":\"Fei Xing, Haihang You\",\"doi\":\"10.1145/2616498.2616536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, computing resources like supercomputers are shared by many users. Most systems are equipped with batch systems as their resource managers. From a user's perspective, the overall turnaround of each submitted job is measured by time-to-solution which consists of the sum of batch queuing time and execution time. On a busy machine, most jobs spend more time waiting in the batch queue than their real job executions. And rarely this is a topic of performance tuning and optimization of parallel computing. we propose a workload aware method systematically to predict jobs' batch queue waiting time patterns. Consequently, it will help user to optimize utilization and improve productivity. With workload data gathered from a supercomputer, we apply Bayesian framework to predict the temporal trend of long-time batch queue waiting probability. Thus, the workload of the machine not only can be predicted, we are able to provide users with a monthly updated reference chart to suggest job submission assembled with better chosen number of CPU and running time requests, which will avoid long-time waiting in batch queue. Our experiment shows that the model could make over 89% correct predictions for all cases we have tested.\",\"PeriodicalId\":93364,\"journal\":{\"name\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"volume\":\"30 1\",\"pages\":\"50:1-50:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2616498.2616536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2616498.2616536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Workload Aware Utilization Optimization for a Petaflop Supercomputer: Evidence Based Assessment Using Statistical Methods
Nowadays, computing resources like supercomputers are shared by many users. Most systems are equipped with batch systems as their resource managers. From a user's perspective, the overall turnaround of each submitted job is measured by time-to-solution which consists of the sum of batch queuing time and execution time. On a busy machine, most jobs spend more time waiting in the batch queue than their real job executions. And rarely this is a topic of performance tuning and optimization of parallel computing. we propose a workload aware method systematically to predict jobs' batch queue waiting time patterns. Consequently, it will help user to optimize utilization and improve productivity. With workload data gathered from a supercomputer, we apply Bayesian framework to predict the temporal trend of long-time batch queue waiting probability. Thus, the workload of the machine not only can be predicted, we are able to provide users with a monthly updated reference chart to suggest job submission assembled with better chosen number of CPU and running time requests, which will avoid long-time waiting in batch queue. Our experiment shows that the model could make over 89% correct predictions for all cases we have tested.