基于季节性非线性LSSVM的地铁短期全天候客流预测

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY
Xin Huang, Yimin Wang, Peiqun Lin, Heng Yu, Yue Luo
{"title":"基于季节性非线性LSSVM的地铁短期全天候客流预测","authors":"Xin Huang, Yimin Wang, Peiqun Lin, Heng Yu, Yue Luo","doi":"10.7307/PTT.V33I2.3561","DOIUrl":null,"url":null,"abstract":"Accurate metro ridership prediction can guide passengers in efficiently selecting their departure time and simultaneously help traffic operators develop a passenger organization strategy. However, short-term passenger flow prediction needs to consider many factors, and the results of the existing models for short-term subway passenger flow forecasting are often unsatisfactory. Along this line, we propose a parallel architecture, called the seasonal and nonlinear least squares support vector machine (SN-LSSVM), to extract the periodicity and nonlinearity characteristics of passenger flow. Various forecasting models, including auto-regressive integrated moving average, long short-term memory network, and support vector machine, are employed for evaluating the performance of the proposed architecture. Moreover, we first applied the method to the Tiyu Xilu station which is the most crowded station in the Guangzhou metro. The results indicate that the proposed model can effectively make all-weather and year-round passenger flow predictions, thus contributing to the management of the station.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Forecasting the All-Weather Short-Term Metro Passenger Flow Based on Seasonal and Nonlinear LSSVM\",\"authors\":\"Xin Huang, Yimin Wang, Peiqun Lin, Heng Yu, Yue Luo\",\"doi\":\"10.7307/PTT.V33I2.3561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate metro ridership prediction can guide passengers in efficiently selecting their departure time and simultaneously help traffic operators develop a passenger organization strategy. However, short-term passenger flow prediction needs to consider many factors, and the results of the existing models for short-term subway passenger flow forecasting are often unsatisfactory. Along this line, we propose a parallel architecture, called the seasonal and nonlinear least squares support vector machine (SN-LSSVM), to extract the periodicity and nonlinearity characteristics of passenger flow. Various forecasting models, including auto-regressive integrated moving average, long short-term memory network, and support vector machine, are employed for evaluating the performance of the proposed architecture. Moreover, we first applied the method to the Tiyu Xilu station which is the most crowded station in the Guangzhou metro. The results indicate that the proposed model can effectively make all-weather and year-round passenger flow predictions, thus contributing to the management of the station.\",\"PeriodicalId\":54546,\"journal\":{\"name\":\"Promet-Traffic & Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Promet-Traffic & Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7307/PTT.V33I2.3561\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/PTT.V33I2.3561","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

准确的地铁客流量预测可以指导乘客有效地选择出发时间,同时也可以帮助交通运营商制定乘客组织策略。然而,短期客流预测需要考虑很多因素,现有的地铁短期客流预测模型结果往往不理想。在此基础上,我们提出了一种并行架构,称为季节性和非线性最小二乘支持向量机(SN-LSSVM),以提取客流的周期性和非线性特征。各种预测模型,包括自回归综合移动平均、长短期记忆网络和支持向量机,被用来评估所提出的体系结构的性能。此外,我们首先将该方法应用于广州地铁最拥挤的车站——铁玉西路站。结果表明,该模型能有效地进行全天候、全年客流预测,为车站管理提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting the All-Weather Short-Term Metro Passenger Flow Based on Seasonal and Nonlinear LSSVM
Accurate metro ridership prediction can guide passengers in efficiently selecting their departure time and simultaneously help traffic operators develop a passenger organization strategy. However, short-term passenger flow prediction needs to consider many factors, and the results of the existing models for short-term subway passenger flow forecasting are often unsatisfactory. Along this line, we propose a parallel architecture, called the seasonal and nonlinear least squares support vector machine (SN-LSSVM), to extract the periodicity and nonlinearity characteristics of passenger flow. Various forecasting models, including auto-regressive integrated moving average, long short-term memory network, and support vector machine, are employed for evaluating the performance of the proposed architecture. Moreover, we first applied the method to the Tiyu Xilu station which is the most crowded station in the Guangzhou metro. The results indicate that the proposed model can effectively make all-weather and year-round passenger flow predictions, thus contributing to the management of the station.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信