{"title":"布朗运动与戈德斯坦-卡茨电报过程之间的沃瑟斯坦距离的定量控制","authors":"G. Barrera, J. Lukkarinen","doi":"10.1214/22-AIHP1288","DOIUrl":null,"url":null,"abstract":"In this manuscript, we provide a non-asymptotic process level control between the telegraph process and the Brownian motion with suitable diffusivity constant via a Wasserstein distance with quadratic average cost. In addition, we derive non-asymptotic estimates for the corresponding time average $p$-th moments. The proof relies on coupling techniques such as coin-flip coupling, synchronous coupling and the Koml\\'os--Major--Tusn\\'ady coupling.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quantitative control of Wasserstein distance between Brownian motion and the Goldstein–Kac telegraph process\",\"authors\":\"G. Barrera, J. Lukkarinen\",\"doi\":\"10.1214/22-AIHP1288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we provide a non-asymptotic process level control between the telegraph process and the Brownian motion with suitable diffusivity constant via a Wasserstein distance with quadratic average cost. In addition, we derive non-asymptotic estimates for the corresponding time average $p$-th moments. The proof relies on coupling techniques such as coin-flip coupling, synchronous coupling and the Koml\\\\'os--Major--Tusn\\\\'ady coupling.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-AIHP1288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-AIHP1288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Quantitative control of Wasserstein distance between Brownian motion and the Goldstein–Kac telegraph process
In this manuscript, we provide a non-asymptotic process level control between the telegraph process and the Brownian motion with suitable diffusivity constant via a Wasserstein distance with quadratic average cost. In addition, we derive non-asymptotic estimates for the corresponding time average $p$-th moments. The proof relies on coupling techniques such as coin-flip coupling, synchronous coupling and the Koml\'os--Major--Tusn\'ady coupling.