记忆电阻脉冲神经网络的设备上学习

Abdullah M. Zyarah, Nicholas Soures, D. Kudithipudi
{"title":"记忆电阻脉冲神经网络的设备上学习","authors":"Abdullah M. Zyarah, Nicholas Soures, D. Kudithipudi","doi":"10.1109/ISCAS.2018.8351813","DOIUrl":null,"url":null,"abstract":"In this paper, a memristor spiking neuron and synaptic trace circuits for efficient on device learning are presented. A key feature of these circuits is the use of memristors to emulate the membrane potential of spiking neurons, as opposed to the conventional use of a capacitor. The circuits are designed in IBM 65nm technology node and validated on a small-scale spiking neural network. It was observed that a 3×3 spiking neural network consumes 19.1 μW of power at 100 MHz.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"188 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On-Device Learning in Memristor Spiking Neural Networks\",\"authors\":\"Abdullah M. Zyarah, Nicholas Soures, D. Kudithipudi\",\"doi\":\"10.1109/ISCAS.2018.8351813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a memristor spiking neuron and synaptic trace circuits for efficient on device learning are presented. A key feature of these circuits is the use of memristors to emulate the membrane potential of spiking neurons, as opposed to the conventional use of a capacitor. The circuits are designed in IBM 65nm technology node and validated on a small-scale spiking neural network. It was observed that a 3×3 spiking neural network consumes 19.1 μW of power at 100 MHz.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"188 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种用于器件学习的记忆电阻尖峰神经元和突触跟踪电路。这些电路的一个关键特征是使用忆阻器来模拟尖峰神经元的膜电位,而不是传统的使用电容器。电路采用IBM 65nm技术节点设计,并在小型脉冲神经网络上进行了验证。观察到3×3脉冲神经网络在100 MHz时的功耗为19.1 μW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-Device Learning in Memristor Spiking Neural Networks
In this paper, a memristor spiking neuron and synaptic trace circuits for efficient on device learning are presented. A key feature of these circuits is the use of memristors to emulate the membrane potential of spiking neurons, as opposed to the conventional use of a capacitor. The circuits are designed in IBM 65nm technology node and validated on a small-scale spiking neural network. It was observed that a 3×3 spiking neural network consumes 19.1 μW of power at 100 MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信