{"title":"局部坐标在优化问题中的应用","authors":"D.V. Denisov","doi":"10.1016/0041-5553(90)90013-I","DOIUrl":null,"url":null,"abstract":"<div><p>The necessary and sufficient conditions for an extremum are expressed in local coordinates. It is shown that in some cases irregularity of the constraints at the extremum points does not affect the form of the necessary conditions. A first-order numerical method with a linear rate of convergence is considered.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 1","pages":"Pages 107-109"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90013-I","citationCount":"0","resultStr":"{\"title\":\"The use of local coordinates in optimization problems\",\"authors\":\"D.V. Denisov\",\"doi\":\"10.1016/0041-5553(90)90013-I\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The necessary and sufficient conditions for an extremum are expressed in local coordinates. It is shown that in some cases irregularity of the constraints at the extremum points does not affect the form of the necessary conditions. A first-order numerical method with a linear rate of convergence is considered.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 1\",\"pages\":\"Pages 107-109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90013-I\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/004155539090013I\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090013I","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The use of local coordinates in optimization problems
The necessary and sufficient conditions for an extremum are expressed in local coordinates. It is shown that in some cases irregularity of the constraints at the extremum points does not affect the form of the necessary conditions. A first-order numerical method with a linear rate of convergence is considered.