奇异谱曲线的高艾里结构与拓扑递推

IF 1.5 Q2 PHYSICS, MATHEMATICAL
G. Borot, Reinier Kramer, Yannik Schuler
{"title":"奇异谱曲线的高艾里结构与拓扑递推","authors":"G. Borot, Reinier Kramer, Yannik Schuler","doi":"10.4171/aihpd/168","DOIUrl":null,"url":null,"abstract":"We give elements towards the classification of quantum Airy structures based on the $W(\\mathfrak{gl}_r)$-algebras at self-dual level based on twisted modules of the Heisenberg VOA of $\\mathfrak{gl}_r$ for twists by arbitrary elements of the Weyl group $\\mathfrak{S}_{r}$. In particular, we construct a large class of such quantum Airy structures. We show that the system of linear ODEs forming the quantum Airy structure and determining uniquely its partition function is equivalent to a topological recursion a la Chekhov--Eynard--Orantin on singular spectral curves. In particular, our work extends the definition of the Bouchard--Eynard topological recursion (valid for smooth curves) to a large class of singular curves, and indicates impossibilities to extend naively the definition to other types of singularities. We also discuss relations to intersection theory on moduli spaces of curves and give precise conjectures for application in open $r$-spin intersection theory.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Higher Airy structures and topological recursion for singular spectral curves\",\"authors\":\"G. Borot, Reinier Kramer, Yannik Schuler\",\"doi\":\"10.4171/aihpd/168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give elements towards the classification of quantum Airy structures based on the $W(\\\\mathfrak{gl}_r)$-algebras at self-dual level based on twisted modules of the Heisenberg VOA of $\\\\mathfrak{gl}_r$ for twists by arbitrary elements of the Weyl group $\\\\mathfrak{S}_{r}$. In particular, we construct a large class of such quantum Airy structures. We show that the system of linear ODEs forming the quantum Airy structure and determining uniquely its partition function is equivalent to a topological recursion a la Chekhov--Eynard--Orantin on singular spectral curves. In particular, our work extends the definition of the Bouchard--Eynard topological recursion (valid for smooth curves) to a large class of singular curves, and indicates impossibilities to extend naively the definition to other types of singularities. We also discuss relations to intersection theory on moduli spaces of curves and give precise conjectures for application in open $r$-spin intersection theory.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpd/168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 10

摘要

基于Weyl群$\mathfrak{S}_{r}$的扭曲模的Heisenberg VOA $\mathfrak{gl}_r$的扭曲模,给出了量子Airy结构在自对偶水平上的$W(\mathfrak{gl}_r)$-代数的分类元素。特别地,我们构造了一大类这样的量子艾里结构。我们证明了形成量子Airy结构并唯一确定其配分函数的线性ode系统等价于奇异谱曲线上Chekhov- Eynard- Orantin的拓扑递归。特别地,我们的工作将Bouchard- Eynard拓扑递归的定义(对光滑曲线有效)扩展到一类大的奇异曲线,并指出不可能将该定义简单地扩展到其他类型的奇异点。讨论了曲线模空间上与交理论的关系,并给出了应用于开r自旋交理论的精确猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher Airy structures and topological recursion for singular spectral curves
We give elements towards the classification of quantum Airy structures based on the $W(\mathfrak{gl}_r)$-algebras at self-dual level based on twisted modules of the Heisenberg VOA of $\mathfrak{gl}_r$ for twists by arbitrary elements of the Weyl group $\mathfrak{S}_{r}$. In particular, we construct a large class of such quantum Airy structures. We show that the system of linear ODEs forming the quantum Airy structure and determining uniquely its partition function is equivalent to a topological recursion a la Chekhov--Eynard--Orantin on singular spectral curves. In particular, our work extends the definition of the Bouchard--Eynard topological recursion (valid for smooth curves) to a large class of singular curves, and indicates impossibilities to extend naively the definition to other types of singularities. We also discuss relations to intersection theory on moduli spaces of curves and give precise conjectures for application in open $r$-spin intersection theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信