MUBench: api误用检测器的基准测试

Sven Amann, Sarah Nadi, H. Nguyen, T. Nguyen, M. Mezini
{"title":"MUBench: api误用检测器的基准测试","authors":"Sven Amann, Sarah Nadi, H. Nguyen, T. Nguyen, M. Mezini","doi":"10.1145/2901739.2903506","DOIUrl":null,"url":null,"abstract":"Over the last few years, researchers proposed a multitude of automated bug-detection approaches that mine a class of bugs that we call API misuses. Evaluations on a variety of software products show both the omnipresence of such misuses and the ability of the approaches to detect them. This work presents MuBench, a dataset of 89 API misuses that we collected from 33 real-world projects and a survey. With the dataset we empirically analyze the prevalence of API misuses compared to other types of bugs, finding that they are rare, but almost always cause crashes. Furthermore, we discuss how to use it to benchmark and compare API-misuse detectors.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"8 1","pages":"464-467"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"MUBench: A Benchmark for API-Misuse Detectors\",\"authors\":\"Sven Amann, Sarah Nadi, H. Nguyen, T. Nguyen, M. Mezini\",\"doi\":\"10.1145/2901739.2903506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last few years, researchers proposed a multitude of automated bug-detection approaches that mine a class of bugs that we call API misuses. Evaluations on a variety of software products show both the omnipresence of such misuses and the ability of the approaches to detect them. This work presents MuBench, a dataset of 89 API misuses that we collected from 33 real-world projects and a survey. With the dataset we empirically analyze the prevalence of API misuses compared to other types of bugs, finding that they are rare, but almost always cause crashes. Furthermore, we discuss how to use it to benchmark and compare API-misuse detectors.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"8 1\",\"pages\":\"464-467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2901739.2903506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901739.2903506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

在过去的几年里,研究人员提出了许多自动化的bug检测方法,这些方法可以挖掘一类我们称之为API滥用的bug。对各种软件产品的评估显示了这种滥用的无所不在和检测它们的方法的能力。这项工作展示了MuBench,这是我们从33个实际项目和一项调查中收集的89个API误用数据集。有了这个数据集,我们实证分析了与其他类型的bug相比,API滥用的流行程度,发现它们很少见,但几乎总是会导致崩溃。此外,我们还讨论了如何使用它来对api滥用检测器进行基准测试和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MUBench: A Benchmark for API-Misuse Detectors
Over the last few years, researchers proposed a multitude of automated bug-detection approaches that mine a class of bugs that we call API misuses. Evaluations on a variety of software products show both the omnipresence of such misuses and the ability of the approaches to detect them. This work presents MuBench, a dataset of 89 API misuses that we collected from 33 real-world projects and a survey. With the dataset we empirically analyze the prevalence of API misuses compared to other types of bugs, finding that they are rare, but almost always cause crashes. Furthermore, we discuss how to use it to benchmark and compare API-misuse detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信