{"title":"关于X2+y2+z2+v2=dxyzv的一些性质","authors":"Michael C. I. Nwogugu","doi":"10.2139/ssrn.3545005","DOIUrl":null,"url":null,"abstract":"This article develops “existence” properties for the equations x2+y2+z2+v2=dXYZV; And x2+y2+z2+v2+u2=dXYZVU, and xi+yi+zi + vi =dXYZV (where i is a positive integer); and the results are applicable where all variables are Integers (ie. proofs within the context of Sub-Rings). Collectively and individually, these equations have wide applications in Computer Science, Physics, Applied Math and Finance/Economics.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Properties of X2+y2+z2+v2=dxyzv; and X2+y2+z2+v2+u2=dxyzvu, and Xi+yi+zi + vi =dxyzv.\",\"authors\":\"Michael C. I. Nwogugu\",\"doi\":\"10.2139/ssrn.3545005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article develops “existence” properties for the equations x2+y2+z2+v2=dXYZV; And x2+y2+z2+v2+u2=dXYZVU, and xi+yi+zi + vi =dXYZV (where i is a positive integer); and the results are applicable where all variables are Integers (ie. proofs within the context of Sub-Rings). Collectively and individually, these equations have wide applications in Computer Science, Physics, Applied Math and Finance/Economics.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3545005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3545005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文给出了方程x2+y2+z2+v2=dXYZV的“存在性”性质;x2+y2+z2+v2+u2=dXYZVU, xi+yi+zi + vi =dXYZV(其中i为正整数);并且结果适用于所有变量都是整数(即。子环范围内的证明)。总的来说,这些方程在计算机科学、物理、应用数学和金融/经济学中有着广泛的应用。
On Some Properties of X2+y2+z2+v2=dxyzv; and X2+y2+z2+v2+u2=dxyzvu, and Xi+yi+zi + vi =dxyzv.
This article develops “existence” properties for the equations x2+y2+z2+v2=dXYZV; And x2+y2+z2+v2+u2=dXYZVU, and xi+yi+zi + vi =dXYZV (where i is a positive integer); and the results are applicable where all variables are Integers (ie. proofs within the context of Sub-Rings). Collectively and individually, these equations have wide applications in Computer Science, Physics, Applied Math and Finance/Economics.