Mohammad Mehdi Jahani, Azita Azimi Meibody, Talie Karimi, M. Banoei, M. Houshmand
{"title":"A10398G线粒体DNA改变与乳腺癌风险增加有关,并与Her2阳性受体相关","authors":"Mohammad Mehdi Jahani, Azita Azimi Meibody, Talie Karimi, M. Banoei, M. Houshmand","doi":"10.1080/24701394.2019.1695788","DOIUrl":null,"url":null,"abstract":"Abstract Breast cancer is the most common malignancy and the second leading cause of cancer deaths among women worldwide after lung cancer. Mitochondria play a central role in the regulation of cellular function, metabolism, and cell death in cancer cells. We aim to examine the mitochondrial polymorphisms of complex I in association with breast cancer in an Iranian cohort. This experimental study includes 53 patients with breast cancer and 35 healthy control patients. In addition, tumor-adjacent normal breast tissue was obtained from each patient. The DNA of the tissue cells was extracted and analyzed for complex I mutations using a PCR sequencing method. Our results show 94 mtDNA complex I variants in tumor tissues. A10398G was the most prevalent polymorphism and strongly correlated with Her2 receptor in tumor tissue samples. Mitochondrial DNA (mtDNA) mutations have been widely linked to the etiology of numerous disorders. The mtDNA mutations screening on A10398G along with other mutations might provide insight on the role of mitochondrial mutations in breast cancer.","PeriodicalId":54298,"journal":{"name":"Mitochondrial Dna Part a","volume":"28 1","pages":"11 - 16"},"PeriodicalIF":1.1000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An A10398G mitochondrial DNA alteration is related to increased risk of breast cancer, and associates with Her2 positive receptor\",\"authors\":\"Mohammad Mehdi Jahani, Azita Azimi Meibody, Talie Karimi, M. Banoei, M. Houshmand\",\"doi\":\"10.1080/24701394.2019.1695788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Breast cancer is the most common malignancy and the second leading cause of cancer deaths among women worldwide after lung cancer. Mitochondria play a central role in the regulation of cellular function, metabolism, and cell death in cancer cells. We aim to examine the mitochondrial polymorphisms of complex I in association with breast cancer in an Iranian cohort. This experimental study includes 53 patients with breast cancer and 35 healthy control patients. In addition, tumor-adjacent normal breast tissue was obtained from each patient. The DNA of the tissue cells was extracted and analyzed for complex I mutations using a PCR sequencing method. Our results show 94 mtDNA complex I variants in tumor tissues. A10398G was the most prevalent polymorphism and strongly correlated with Her2 receptor in tumor tissue samples. Mitochondrial DNA (mtDNA) mutations have been widely linked to the etiology of numerous disorders. The mtDNA mutations screening on A10398G along with other mutations might provide insight on the role of mitochondrial mutations in breast cancer.\",\"PeriodicalId\":54298,\"journal\":{\"name\":\"Mitochondrial Dna Part a\",\"volume\":\"28 1\",\"pages\":\"11 - 16\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna Part a\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/24701394.2019.1695788\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna Part a","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/24701394.2019.1695788","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
An A10398G mitochondrial DNA alteration is related to increased risk of breast cancer, and associates with Her2 positive receptor
Abstract Breast cancer is the most common malignancy and the second leading cause of cancer deaths among women worldwide after lung cancer. Mitochondria play a central role in the regulation of cellular function, metabolism, and cell death in cancer cells. We aim to examine the mitochondrial polymorphisms of complex I in association with breast cancer in an Iranian cohort. This experimental study includes 53 patients with breast cancer and 35 healthy control patients. In addition, tumor-adjacent normal breast tissue was obtained from each patient. The DNA of the tissue cells was extracted and analyzed for complex I mutations using a PCR sequencing method. Our results show 94 mtDNA complex I variants in tumor tissues. A10398G was the most prevalent polymorphism and strongly correlated with Her2 receptor in tumor tissue samples. Mitochondrial DNA (mtDNA) mutations have been widely linked to the etiology of numerous disorders. The mtDNA mutations screening on A10398G along with other mutations might provide insight on the role of mitochondrial mutations in breast cancer.
期刊介绍:
Mitochondrial DNA Part A publishes original high-quality manuscripts on physical, chemical, and biochemical aspects of mtDNA and proteins involved in mtDNA metabolism, and/or interactions. Manuscripts on cytosolic and extracellular mtDNA, and on dysfunction caused by alterations in mtDNA integrity as well as methodological papers detailing novel approaches for mtDNA manipulation in vitro and in vivo are welcome. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The Journal also considers manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences, as well as papers that discuss the utility of mitochondrial DNA information in medical studies and in human evolutionary biology.