Owen Sedej, E. Mbonimpa, Trevor W Sleight, J. Slagley
{"title":"人工神经网络和梯度增强机器用于回归评估气化过程:综述","authors":"Owen Sedej, E. Mbonimpa, Trevor W Sleight, J. Slagley","doi":"10.21926/jept.2203027","DOIUrl":null,"url":null,"abstract":"Waste-to-Energy technologies have the potential to dramatically improve both the natural and human environment. One type of waste-to-energy technology that has been successful is gasification. There are numerous types of gasification processes and in order to drive understanding and the optimization of these systems, traditional approaches like computational fluid dynamics software have been utilized to model these systems. The modern advent of machine learning models has allowed for accurate and computationally efficient predictions for gasification systems that are informed by numerous experimental and numerical solutions. Two types of machine learning models that have been widely used to solve for quantitative variables that are of predictive interest in gasification systems are gradient boosted machines and artificial neural networks. In this article, the reviewed literature used either gradient boosted machines or artificial neural networks to successfully model gasification systems. The review of such literature allows for a comparison in machine learning model architecture and resultant accuracy as well as an insight into what parameters are being used to inform the models and to make predictions.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Networks and Gradient Boosted Machines Used for Regression to Evaluate Gasification Processes: A Review\",\"authors\":\"Owen Sedej, E. Mbonimpa, Trevor W Sleight, J. Slagley\",\"doi\":\"10.21926/jept.2203027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waste-to-Energy technologies have the potential to dramatically improve both the natural and human environment. One type of waste-to-energy technology that has been successful is gasification. There are numerous types of gasification processes and in order to drive understanding and the optimization of these systems, traditional approaches like computational fluid dynamics software have been utilized to model these systems. The modern advent of machine learning models has allowed for accurate and computationally efficient predictions for gasification systems that are informed by numerous experimental and numerical solutions. Two types of machine learning models that have been widely used to solve for quantitative variables that are of predictive interest in gasification systems are gradient boosted machines and artificial neural networks. In this article, the reviewed literature used either gradient boosted machines or artificial neural networks to successfully model gasification systems. The review of such literature allows for a comparison in machine learning model architecture and resultant accuracy as well as an insight into what parameters are being used to inform the models and to make predictions.\",\"PeriodicalId\":53427,\"journal\":{\"name\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Energy Science and Power Generation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/jept.2203027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy Science and Power Generation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/jept.2203027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
Artificial Neural Networks and Gradient Boosted Machines Used for Regression to Evaluate Gasification Processes: A Review
Waste-to-Energy technologies have the potential to dramatically improve both the natural and human environment. One type of waste-to-energy technology that has been successful is gasification. There are numerous types of gasification processes and in order to drive understanding and the optimization of these systems, traditional approaches like computational fluid dynamics software have been utilized to model these systems. The modern advent of machine learning models has allowed for accurate and computationally efficient predictions for gasification systems that are informed by numerous experimental and numerical solutions. Two types of machine learning models that have been widely used to solve for quantitative variables that are of predictive interest in gasification systems are gradient boosted machines and artificial neural networks. In this article, the reviewed literature used either gradient boosted machines or artificial neural networks to successfully model gasification systems. The review of such literature allows for a comparison in machine learning model architecture and resultant accuracy as well as an insight into what parameters are being used to inform the models and to make predictions.