海上浮力支腿储存和再气化平台的Mathieu稳定性

S. Chandrasekaran, P. A. Kiran
{"title":"海上浮力支腿储存和再气化平台的Mathieu稳定性","authors":"S. Chandrasekaran, P. A. Kiran","doi":"10.12989/OSE.2018.8.3.345","DOIUrl":null,"url":null,"abstract":"Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). Six buoyant legs support the deck and are placed symmetric with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotation from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut-moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. Postulated failure cases, created by placing eccentric loads at different locations resulted in dynamic tether tension variation; chaotic nature of tension variation is also observed in few cases. A detailed numerical analysis is carried out for BLSRP using Mathieu equation of stability. Increase in the magnitude of eccentric load and its position influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability proves the severity of instability.","PeriodicalId":23826,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering","volume":"161 1","pages":"752-765"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform\",\"authors\":\"S. Chandrasekaran, P. A. Kiran\",\"doi\":\"10.12989/OSE.2018.8.3.345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). Six buoyant legs support the deck and are placed symmetric with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotation from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut-moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. Postulated failure cases, created by placing eccentric loads at different locations resulted in dynamic tether tension variation; chaotic nature of tension variation is also observed in few cases. A detailed numerical analysis is carried out for BLSRP using Mathieu equation of stability. Increase in the magnitude of eccentric load and its position influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability proves the severity of instability.\",\"PeriodicalId\":23826,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering\",\"volume\":\"161 1\",\"pages\":\"752-765\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2018.8.3.345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2018.8.3.345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

石油和天然气行业对大型浮式、储存和再气化装置(fsru)的需求不断增加,导致了新型几何形状的浮式腿式储存和再气化平台(BLSRP)的发展。六个浮力腿支撑甲板,并与波浪方向对称放置。圆形甲板使用铰链连接到浮力腿,这抑制了从腿到甲板的旋转传递,反之亦然。浮腿采用高初始预紧力的系泊系统与海床连接,使刚体在垂直平面上运动。遇到环境荷载时,会引起系索张力的动态变化,进而影响平台的稳定性。通过在不同位置放置偏心载荷而产生的假定破坏情况导致动态锚索张力变化;在少数情况下也观察到张力变化的混沌性质。利用Mathieu稳定性方程对BLSRP进行了详细的数值分析。偏心载荷的大小和位置对锚索疲劳寿命有显著影响。疲劳寿命随锚索张力变化幅度的增大而减小。Mathieu失稳作用下系索的疲劳寿命极低,证明了失稳的严重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform
Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). Six buoyant legs support the deck and are placed symmetric with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotation from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut-moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. Postulated failure cases, created by placing eccentric loads at different locations resulted in dynamic tether tension variation; chaotic nature of tension variation is also observed in few cases. A detailed numerical analysis is carried out for BLSRP using Mathieu equation of stability. Increase in the magnitude of eccentric load and its position influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability proves the severity of instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信