齐次Besov空间中Navier-Stokes-Coriolis方程的全局适定性和渐近性

Asymptot. Anal. Pub Date : 2017-11-08 DOI:10.3233/ASY-181496
L. Ferreira, V. Angulo-Castillo
{"title":"齐次Besov空间中Navier-Stokes-Coriolis方程的全局适定性和渐近性","authors":"L. Ferreira, V. Angulo-Castillo","doi":"10.3233/ASY-181496","DOIUrl":null,"url":null,"abstract":"We are concerned with the $3$D-Navier-Stokes equations with Coriolis force. Existence and uniqueness of global solutions in homogeneous Besov spaces are obtained for large speed of rotation. In the critical case of the regularity, we consider a suitable initial data class whose definition is based on the Stokes-Coriolis semigroup and Besov spaces. Moreover, we analyze the asymptotic behavior of solutions in that setting as the speed of rotation goes to infinity.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"46 1","pages":"37-58"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Global well-posedness and asymptotic behavior for Navier-Stokes-Coriolis equations in homogeneous Besov spaces\",\"authors\":\"L. Ferreira, V. Angulo-Castillo\",\"doi\":\"10.3233/ASY-181496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with the $3$D-Navier-Stokes equations with Coriolis force. Existence and uniqueness of global solutions in homogeneous Besov spaces are obtained for large speed of rotation. In the critical case of the regularity, we consider a suitable initial data class whose definition is based on the Stokes-Coriolis semigroup and Besov spaces. Moreover, we analyze the asymptotic behavior of solutions in that setting as the speed of rotation goes to infinity.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"46 1\",\"pages\":\"37-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们关注的是含有科里奥利力的D-Navier-Stokes方程。得到了大转速下齐次Besov空间整体解的存在唯一性。在正则性的临界情况下,我们考虑了一个合适的初始数据类,其定义基于Stokes-Coriolis半群和Besov空间。此外,我们分析了当旋转速度趋于无穷时,解的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness and asymptotic behavior for Navier-Stokes-Coriolis equations in homogeneous Besov spaces
We are concerned with the $3$D-Navier-Stokes equations with Coriolis force. Existence and uniqueness of global solutions in homogeneous Besov spaces are obtained for large speed of rotation. In the critical case of the regularity, we consider a suitable initial data class whose definition is based on the Stokes-Coriolis semigroup and Besov spaces. Moreover, we analyze the asymptotic behavior of solutions in that setting as the speed of rotation goes to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信