{"title":"不完全类层次的层次半监督分类","authors":"Bhavana Dalvi, A. Mishra, William W. Cohen","doi":"10.1145/2835776.2835810","DOIUrl":null,"url":null,"abstract":"In an entity classification task, topic or concept hierarchies are often incomplete. Previous work by Dalvi et al. [12] has showed that in non-hierarchical semi-supervised classification tasks, the presence of such unanticipated classes can cause semantic drift for seeded classes. The Exploratory learning [12] method was proposed to solve this problem; however it is limited to the flat classification task. This paper builds such exploratory learning methods for hierarchical classification tasks. We experimented with subsets of the NELL [8] ontology and text, and HTML table datasets derived from the ClueWeb09 corpus. Our method (OptDAC-ExploreEM) outperforms the existing Exploratory EM method, and its naive extension (DAC-ExploreEM), in terms of seed class F1 on average by 10% and 7% respectively.","PeriodicalId":20567,"journal":{"name":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hierarchical Semi-supervised Classification with Incomplete Class Hierarchies\",\"authors\":\"Bhavana Dalvi, A. Mishra, William W. Cohen\",\"doi\":\"10.1145/2835776.2835810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an entity classification task, topic or concept hierarchies are often incomplete. Previous work by Dalvi et al. [12] has showed that in non-hierarchical semi-supervised classification tasks, the presence of such unanticipated classes can cause semantic drift for seeded classes. The Exploratory learning [12] method was proposed to solve this problem; however it is limited to the flat classification task. This paper builds such exploratory learning methods for hierarchical classification tasks. We experimented with subsets of the NELL [8] ontology and text, and HTML table datasets derived from the ClueWeb09 corpus. Our method (OptDAC-ExploreEM) outperforms the existing Exploratory EM method, and its naive extension (DAC-ExploreEM), in terms of seed class F1 on average by 10% and 7% respectively.\",\"PeriodicalId\":20567,\"journal\":{\"name\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835776.2835810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835776.2835810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical Semi-supervised Classification with Incomplete Class Hierarchies
In an entity classification task, topic or concept hierarchies are often incomplete. Previous work by Dalvi et al. [12] has showed that in non-hierarchical semi-supervised classification tasks, the presence of such unanticipated classes can cause semantic drift for seeded classes. The Exploratory learning [12] method was proposed to solve this problem; however it is limited to the flat classification task. This paper builds such exploratory learning methods for hierarchical classification tasks. We experimented with subsets of the NELL [8] ontology and text, and HTML table datasets derived from the ClueWeb09 corpus. Our method (OptDAC-ExploreEM) outperforms the existing Exploratory EM method, and its naive extension (DAC-ExploreEM), in terms of seed class F1 on average by 10% and 7% respectively.