{"title":"$L_{p}$不等式对于有限制零的多项式的增长","authors":"N. A. Rather, Suhail Gulzar, A. Bhat","doi":"10.5817/am2022-3-159","DOIUrl":null,"url":null,"abstract":". Let P ( z ) = P n ν =0 a ν z ν be a polynomial of degree at most n which does not vanish in the disk | z | < 1, then for 1 ≤ p < ∞ and R > 1, Boas and Rahman proved In this paper, we improve the above inequality for 0 ≤ p < ∞ by involving some of the coefficients of the polynomial P ( z ). Analogous result for the class of polynomials P ( z ) having no zero in | z | > 1 is also given.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"48 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$L_{p}$ inequalities for the growth of polynomials with restricted zeros\",\"authors\":\"N. A. Rather, Suhail Gulzar, A. Bhat\",\"doi\":\"10.5817/am2022-3-159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let P ( z ) = P n ν =0 a ν z ν be a polynomial of degree at most n which does not vanish in the disk | z | < 1, then for 1 ≤ p < ∞ and R > 1, Boas and Rahman proved In this paper, we improve the above inequality for 0 ≤ p < ∞ by involving some of the coefficients of the polynomial P ( z ). Analogous result for the class of polynomials P ( z ) having no zero in | z | > 1 is also given.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2022-3-159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-3-159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
。设P (z) = P n ν =0 a ν z ν是一个不消失于圆盘| z | < 1的最多n次的多项式,那么对于1≤P <∞和R > 1, Boas和Rahman证明了在0≤P <∞时,我们通过引入多项式P (z)的一些系数来改进上述不等式。给出了一类多项式P (z)在| z | > 1范围内无零的类似结果。
$L_{p}$ inequalities for the growth of polynomials with restricted zeros
. Let P ( z ) = P n ν =0 a ν z ν be a polynomial of degree at most n which does not vanish in the disk | z | < 1, then for 1 ≤ p < ∞ and R > 1, Boas and Rahman proved In this paper, we improve the above inequality for 0 ≤ p < ∞ by involving some of the coefficients of the polynomial P ( z ). Analogous result for the class of polynomials P ( z ) having no zero in | z | > 1 is also given.
期刊介绍:
Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.