$L_{p}$不等式对于有限制零的多项式的增长

IF 0.5 Q3 MATHEMATICS
N. A. Rather, Suhail Gulzar, A. Bhat
{"title":"$L_{p}$不等式对于有限制零的多项式的增长","authors":"N. A. Rather, Suhail Gulzar, A. Bhat","doi":"10.5817/am2022-3-159","DOIUrl":null,"url":null,"abstract":". Let P ( z ) = P n ν =0 a ν z ν be a polynomial of degree at most n which does not vanish in the disk | z | < 1, then for 1 ≤ p < ∞ and R > 1, Boas and Rahman proved In this paper, we improve the above inequality for 0 ≤ p < ∞ by involving some of the coefficients of the polynomial P ( z ). Analogous result for the class of polynomials P ( z ) having no zero in | z | > 1 is also given.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"48 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$L_{p}$ inequalities for the growth of polynomials with restricted zeros\",\"authors\":\"N. A. Rather, Suhail Gulzar, A. Bhat\",\"doi\":\"10.5817/am2022-3-159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let P ( z ) = P n ν =0 a ν z ν be a polynomial of degree at most n which does not vanish in the disk | z | < 1, then for 1 ≤ p < ∞ and R > 1, Boas and Rahman proved In this paper, we improve the above inequality for 0 ≤ p < ∞ by involving some of the coefficients of the polynomial P ( z ). Analogous result for the class of polynomials P ( z ) having no zero in | z | > 1 is also given.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2022-3-159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-3-159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。设P (z) = P n ν =0 a ν z ν是一个不消失于圆盘| z | < 1的最多n次的多项式,那么对于1≤P <∞和R > 1, Boas和Rahman证明了在0≤P <∞时,我们通过引入多项式P (z)的一些系数来改进上述不等式。给出了一类多项式P (z)在| z | > 1范围内无零的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$L_{p}$ inequalities for the growth of polynomials with restricted zeros
. Let P ( z ) = P n ν =0 a ν z ν be a polynomial of degree at most n which does not vanish in the disk | z | < 1, then for 1 ≤ p < ∞ and R > 1, Boas and Rahman proved In this paper, we improve the above inequality for 0 ≤ p < ∞ by involving some of the coefficients of the polynomial P ( z ). Analogous result for the class of polynomials P ( z ) having no zero in | z | > 1 is also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信