Tamir Abo El Nour, T. Bodewes, M. Wharton, C. Verlaan
{"title":"Basrah NGL:伊拉克南部新酸性气处理中心的最佳实践","authors":"Tamir Abo El Nour, T. Bodewes, M. Wharton, C. Verlaan","doi":"10.2118/193228-MS","DOIUrl":null,"url":null,"abstract":"\n The objectives of the paper are to use the Basrah NGL gas processing project in the Basrah Gas Company JV (BGC) to demonstrate best practice application of industry solutions and appropriate technology selection, aligning with project value drivers whilst managing technical and non-technical uncertainties in decision making.\n In mid-2018 contracts were awarded for the Basrah NGL gas processing hub in Southern Iraq that will set the competitive cost and schedule benchmark for new gas plants in Iraq. Embracing Shell and industry experience to deliver a standardized and replicable design was a key priority for the project team and JV partners. Technology selections were evaluated against project value drivers to support robust decision making for current and future operations, and contracting strategy selected considering synergies across the portfolio through bundling and building on in-country experience.\n Two trains of 200 mmscf/d each have been awarded in the first development phase, however future expansion requirements are much simplified with the facility designed to be expandable to 5 replicated trains providing a total 1000 mmscf/d capacity in line with the upstream gas production forecast. The benefits of standardisation and replication lock in further cost and schedule savings for subsequent gas processing trains and continue to lower unit development and operating costs. In line with the future plans for the facilities, pre-investments were made for major infrastructure investments including gas and LPG export pipelines and high voltage power supply.\n The BGC NGL processing train design is flexible to the range of gas qualities prevalent in Southern Iraq. Technology selections have been appropriately made to consider current and future requirements both in terms of ethane and LPG recovery but also acid gas removal and Sulphur recovery solutions. In the case of Sulphur recovery, a Shell and-Paques developed, Thiopaq technology is selected to provide the most capital efficient flexible solution, whilst also providing ease of scale-up to higher recovery rates as the upstream gas supply becomes progressively more sour (with higher H2S content) over time.","PeriodicalId":11208,"journal":{"name":"Day 2 Tue, November 13, 2018","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basrah NGL: Best Practices for a New Sour Gas Processing Hub in Southern Iraq\",\"authors\":\"Tamir Abo El Nour, T. Bodewes, M. Wharton, C. Verlaan\",\"doi\":\"10.2118/193228-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objectives of the paper are to use the Basrah NGL gas processing project in the Basrah Gas Company JV (BGC) to demonstrate best practice application of industry solutions and appropriate technology selection, aligning with project value drivers whilst managing technical and non-technical uncertainties in decision making.\\n In mid-2018 contracts were awarded for the Basrah NGL gas processing hub in Southern Iraq that will set the competitive cost and schedule benchmark for new gas plants in Iraq. Embracing Shell and industry experience to deliver a standardized and replicable design was a key priority for the project team and JV partners. Technology selections were evaluated against project value drivers to support robust decision making for current and future operations, and contracting strategy selected considering synergies across the portfolio through bundling and building on in-country experience.\\n Two trains of 200 mmscf/d each have been awarded in the first development phase, however future expansion requirements are much simplified with the facility designed to be expandable to 5 replicated trains providing a total 1000 mmscf/d capacity in line with the upstream gas production forecast. The benefits of standardisation and replication lock in further cost and schedule savings for subsequent gas processing trains and continue to lower unit development and operating costs. In line with the future plans for the facilities, pre-investments were made for major infrastructure investments including gas and LPG export pipelines and high voltage power supply.\\n The BGC NGL processing train design is flexible to the range of gas qualities prevalent in Southern Iraq. Technology selections have been appropriately made to consider current and future requirements both in terms of ethane and LPG recovery but also acid gas removal and Sulphur recovery solutions. In the case of Sulphur recovery, a Shell and-Paques developed, Thiopaq technology is selected to provide the most capital efficient flexible solution, whilst also providing ease of scale-up to higher recovery rates as the upstream gas supply becomes progressively more sour (with higher H2S content) over time.\",\"PeriodicalId\":11208,\"journal\":{\"name\":\"Day 2 Tue, November 13, 2018\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, November 13, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/193228-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 13, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193228-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Basrah NGL: Best Practices for a New Sour Gas Processing Hub in Southern Iraq
The objectives of the paper are to use the Basrah NGL gas processing project in the Basrah Gas Company JV (BGC) to demonstrate best practice application of industry solutions and appropriate technology selection, aligning with project value drivers whilst managing technical and non-technical uncertainties in decision making.
In mid-2018 contracts were awarded for the Basrah NGL gas processing hub in Southern Iraq that will set the competitive cost and schedule benchmark for new gas plants in Iraq. Embracing Shell and industry experience to deliver a standardized and replicable design was a key priority for the project team and JV partners. Technology selections were evaluated against project value drivers to support robust decision making for current and future operations, and contracting strategy selected considering synergies across the portfolio through bundling and building on in-country experience.
Two trains of 200 mmscf/d each have been awarded in the first development phase, however future expansion requirements are much simplified with the facility designed to be expandable to 5 replicated trains providing a total 1000 mmscf/d capacity in line with the upstream gas production forecast. The benefits of standardisation and replication lock in further cost and schedule savings for subsequent gas processing trains and continue to lower unit development and operating costs. In line with the future plans for the facilities, pre-investments were made for major infrastructure investments including gas and LPG export pipelines and high voltage power supply.
The BGC NGL processing train design is flexible to the range of gas qualities prevalent in Southern Iraq. Technology selections have been appropriately made to consider current and future requirements both in terms of ethane and LPG recovery but also acid gas removal and Sulphur recovery solutions. In the case of Sulphur recovery, a Shell and-Paques developed, Thiopaq technology is selected to provide the most capital efficient flexible solution, whilst also providing ease of scale-up to higher recovery rates as the upstream gas supply becomes progressively more sour (with higher H2S content) over time.