视觉和语言导航的学习方向和视觉信号

Yue Zhang, Parisa Kordjamshidi
{"title":"视觉和语言导航的学习方向和视觉信号","authors":"Yue Zhang, Parisa Kordjamshidi","doi":"10.48550/arXiv.2209.12723","DOIUrl":null,"url":null,"abstract":"Understanding spatial and visual information is essential for a navigation agent who follows natural language instructions. The current Transformer-based VLN agents entangle the orientation and vision information, which limits the gain from the learning of each information source. In this paper, we design a neural agent with explicit Orientation and Vision modules. Those modules learn to ground spatial information and landmark mentions in the instructions to the visual environment more effectively. To strengthen the spatial reasoning and visual perception of the agent, we design specific pre-training tasks to feed and better utilize the corresponding modules in our final navigation model. We evaluate our approach on both Room2room (R2R) and Room4room (R4R) datasets and achieve the state of the art results on both benchmarks.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"39 1","pages":"5745-5754"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"LOViS: Learning Orientation and Visual Signals for Vision and Language Navigation\",\"authors\":\"Yue Zhang, Parisa Kordjamshidi\",\"doi\":\"10.48550/arXiv.2209.12723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding spatial and visual information is essential for a navigation agent who follows natural language instructions. The current Transformer-based VLN agents entangle the orientation and vision information, which limits the gain from the learning of each information source. In this paper, we design a neural agent with explicit Orientation and Vision modules. Those modules learn to ground spatial information and landmark mentions in the instructions to the visual environment more effectively. To strengthen the spatial reasoning and visual perception of the agent, we design specific pre-training tasks to feed and better utilize the corresponding modules in our final navigation model. We evaluate our approach on both Room2room (R2R) and Room4room (R4R) datasets and achieve the state of the art results on both benchmarks.\",\"PeriodicalId\":91381,\"journal\":{\"name\":\"Proceedings of COLING. International Conference on Computational Linguistics\",\"volume\":\"39 1\",\"pages\":\"5745-5754\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of COLING. International Conference on Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.12723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.12723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

理解空间和视觉信息对于遵循自然语言指令的导航代理至关重要。目前基于transformer的VLN智能体将方向和视觉信息纠缠在一起,限制了每个信息源学习的增益。本文设计了一个具有显式方向和视觉模块的神经智能体。这些模块学习更有效地将指令中提到的空间信息和地标联系到视觉环境中。为了加强智能体的空间推理和视觉感知能力,我们设计了特定的预训练任务,以便在最终的导航模型中更好地利用相应的模块。我们在Room2room (R2R)和Room4room (R4R)数据集上评估了我们的方法,并在两个基准测试上获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LOViS: Learning Orientation and Visual Signals for Vision and Language Navigation
Understanding spatial and visual information is essential for a navigation agent who follows natural language instructions. The current Transformer-based VLN agents entangle the orientation and vision information, which limits the gain from the learning of each information source. In this paper, we design a neural agent with explicit Orientation and Vision modules. Those modules learn to ground spatial information and landmark mentions in the instructions to the visual environment more effectively. To strengthen the spatial reasoning and visual perception of the agent, we design specific pre-training tasks to feed and better utilize the corresponding modules in our final navigation model. We evaluate our approach on both Room2room (R2R) and Room4room (R4R) datasets and achieve the state of the art results on both benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信